{"title":"Improving Doping Efficiency of Mist-CVD Epitaxy for Tin-Doped α-Ga₂O₃ Using Tin Chloride Pentahydrate","authors":"Han-Yin Liu;Yun-Yun Cheng;Wei-Han Chen;Ko-Fan Hu;Nei-En Chiu","doi":"10.1109/TSM.2024.3475730","DOIUrl":null,"url":null,"abstract":"Tin chloride pentahydrate (SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O) is used as the dopant precursor to form the n-type \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3 in this study. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (HR-TEM) confirm that the single-crystalline \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O epi-layer was grown on the r-plane sapphire substrate using mist chemical vapor deposition (mist-CVD). When the Sn doping atomic concentrations are the same, the electron concentration of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O is higher than that of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{2}}} \\cdot 2$ </tex-math></inline-formula>\n H2O. The lower thermal decomposition temperature and lower residues of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O are confirmed in thermogravimetric (TGA) analysis. Sn \n<inline-formula> <tex-math>$3d_{5/2}$ </tex-math></inline-formula>\n binding energy spectra observed by X-ray photoelectron spectroscopy (XPS) show that SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O provides more \n<inline-formula> <tex-math>$Sn^{4+}$ </tex-math></inline-formula>\n than SnCl\n<inline-formula> <tex-math>${_{{2}}} \\cdot 2$ </tex-math></inline-formula>\n H2O. The specific contact resistivity of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O reaches \n<inline-formula> <tex-math>$1.62\\times 10{^{-}5 }~\\Omega $ </tex-math></inline-formula>\n-cm2 with \n<inline-formula> <tex-math>$10^{20}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-}3 $ </tex-math></inline-formula>\n Sn doping concentration. Moreover, the power figure-of-merit (PFoM) of \n<inline-formula> <tex-math>$\\alpha $ </tex-math></inline-formula>\n-Ga2O3:SnCl\n<inline-formula> <tex-math>${_{{4}}} \\cdot 5$ </tex-math></inline-formula>\n H2O-based lateral Schottky barrier diode (SBD) is 0.356 GW/cm2 which is comparable to \n<inline-formula> <tex-math>$\\beta $ </tex-math></inline-formula>\n-Ga2O3-based SBD.","PeriodicalId":451,"journal":{"name":"IEEE Transactions on Semiconductor Manufacturing","volume":"37 4","pages":"629-633"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Semiconductor Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706769/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Tin chloride pentahydrate (SnCl
${_{{4}}} \cdot 5$
H2O) is used as the dopant precursor to form the n-type
$\alpha $
-Ga2O3 in this study. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (HR-TEM) confirm that the single-crystalline
$\alpha $
-Ga2O3:SnCl
${_{{4}}} \cdot 5$
H2O epi-layer was grown on the r-plane sapphire substrate using mist chemical vapor deposition (mist-CVD). When the Sn doping atomic concentrations are the same, the electron concentration of
$\alpha $
-Ga2O3:SnCl
${_{{4}}} \cdot 5$
H2O is higher than that of
$\alpha $
-Ga2O3:SnCl
${_{{2}}} \cdot 2$
H2O. The lower thermal decomposition temperature and lower residues of
$\alpha $
-Ga2O3:SnCl
${_{{4}}} \cdot 5$
H2O are confirmed in thermogravimetric (TGA) analysis. Sn
$3d_{5/2}$
binding energy spectra observed by X-ray photoelectron spectroscopy (XPS) show that SnCl
${_{{4}}} \cdot 5$
H2O provides more
$Sn^{4+}$
than SnCl
${_{{2}}} \cdot 2$
H2O. The specific contact resistivity of
$\alpha $
-Ga2O3:SnCl
${_{{4}}} \cdot 5$
H2O reaches
$1.62\times 10{^{-}5 }~\Omega $
-cm2 with
$10^{20}$
cm
$^{-}3 $
Sn doping concentration. Moreover, the power figure-of-merit (PFoM) of
$\alpha $
-Ga2O3:SnCl
${_{{4}}} \cdot 5$
H2O-based lateral Schottky barrier diode (SBD) is 0.356 GW/cm2 which is comparable to
$\beta $
-Ga2O3-based SBD.
期刊介绍:
The IEEE Transactions on Semiconductor Manufacturing addresses the challenging problems of manufacturing complex microelectronic components, especially very large scale integrated circuits (VLSI). Manufacturing these products requires precision micropatterning, precise control of materials properties, ultraclean work environments, and complex interactions of chemical, physical, electrical and mechanical processes.