Exhaustive search for novel multicomponent alloys with brute force and machine learning

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Viktoriia Zinkovich, Vadim Sotskov, Alexander Shapeev, Evgeny Podryabinkin
{"title":"Exhaustive search for novel multicomponent alloys with brute force and machine learning","authors":"Viktoriia Zinkovich, Vadim Sotskov, Alexander Shapeev, Evgeny Podryabinkin","doi":"10.1038/s41524-024-01452-x","DOIUrl":null,"url":null,"abstract":"<p>We present an algorithm for the high-throughput computational discovery of intermetallic compounds in systems with a large number of components. It is particularly important for high entropy alloys (HEAs), where multiple principal elements can form numerous potential intermetallic compounds during the condensation process, making it challenging to predict the dominant phase. Our algorithm is based on a brute-force evaluation of candidate structures with a fixed underlying lattice (FCC or BCC) accelerated by machine-learning interatomic potentials. The algorithm takes a set of chemical elements and a crystal lattice type as inputs and produces structures on and near the convex hull of thermodynamically stable structures. The candidate structures are evaluated using the low-rank potential (LRP), trained to reproduce energies of structures equilibrated with density functional theory (DFT). Thanks to extreme computational effectiveness of the LRP, it is feasible to evaluate hundreds of thousands of structures per second, per CPU core. Thus, our algorithm screens a complete set of candidate structures for a given system without missing any configurations. We validated our method on systems with BCC (Nb-W, Nb-Mo-W, V-Nb-Mo-Ta-W) and FCC (Cu-Pt, Cu-Pd-Pt, Cu-Pd-Ag-Pt-Au) lattices and discovered 268 new alloys not reported in the AFLOW database<sup>1</sup>, which we used as a benchmark.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"255 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01452-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present an algorithm for the high-throughput computational discovery of intermetallic compounds in systems with a large number of components. It is particularly important for high entropy alloys (HEAs), where multiple principal elements can form numerous potential intermetallic compounds during the condensation process, making it challenging to predict the dominant phase. Our algorithm is based on a brute-force evaluation of candidate structures with a fixed underlying lattice (FCC or BCC) accelerated by machine-learning interatomic potentials. The algorithm takes a set of chemical elements and a crystal lattice type as inputs and produces structures on and near the convex hull of thermodynamically stable structures. The candidate structures are evaluated using the low-rank potential (LRP), trained to reproduce energies of structures equilibrated with density functional theory (DFT). Thanks to extreme computational effectiveness of the LRP, it is feasible to evaluate hundreds of thousands of structures per second, per CPU core. Thus, our algorithm screens a complete set of candidate structures for a given system without missing any configurations. We validated our method on systems with BCC (Nb-W, Nb-Mo-W, V-Nb-Mo-Ta-W) and FCC (Cu-Pt, Cu-Pd-Pt, Cu-Pd-Ag-Pt-Au) lattices and discovered 268 new alloys not reported in the AFLOW database1, which we used as a benchmark.

Abstract Image

用蛮力和机器学习彻底搜索新型多组分合金
我们提出了一种高通量计算发现具有大量成分的系统中金属间化合物的算法。这对于高熵合金 (HEA) 尤为重要,因为在高熵合金中,多种主要元素在缩合过程中会形成许多潜在的金属间化合物,这使得预测主要相位变得十分困难。我们的算法基于对具有固定底层晶格(FCC 或 BCC)的候选结构的粗暴评估,并通过机器学习原子间势能进行加速。该算法将一组化学元素和一种晶格类型作为输入,生成热力学稳定结构凸壳上和凸壳附近的结构。候选结构使用低秩势能(LRP)进行评估,该势能经过训练,可以重现用密度泛函理论(DFT)平衡后的结构能量。由于 LRP 的计算效率极高,因此每秒每个 CPU 内核可以评估数十万个结构。因此,我们的算法可以为给定系统筛选出一套完整的候选结构,而不会遗漏任何配置。我们在 BCC(Nb-W、Nb-Mo-W、V-Nb-Mo-Ta-W)和 FCC(Cu-Pt、Cu-Pd-Pt、Cu-Pd-Ag-Pt-Au)晶格的系统上验证了我们的方法,并发现了 268 种 AFLOW 数据库1 中未报告的新合金,我们将其作为基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信