Alexandre Infanti, Alessandro Giardina, Josip Razum, Daniel L King, Stephanie Baggio, Jeffrey G Snodgrass, Matthew Vowels, Adriano Schimmenti, Orsolya Király, Hans-Juergen Rumpf, Claus Vögele, Joël Billieux
{"title":"User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution.","authors":"Alexandre Infanti, Alessandro Giardina, Josip Razum, Daniel L King, Stephanie Baggio, Jeffrey G Snodgrass, Matthew Vowels, Adriano Schimmenti, Orsolya Király, Hans-Juergen Rumpf, Claus Vögele, Joël Billieux","doi":"10.1556/2006.2024.00032","DOIUrl":null,"url":null,"abstract":"<p><p>In their study, Stavropoulos et al. (2023) capitalized on supervised machine learning and a longitudinal design and reported that the User-Avatar Bond could be accurately employed to detect Gaming Disorder (GD) risk in a community sample of gamers. The authors suggested that the User-Avatar Bond is a \"digital phenotype\" that could be used as a diagnostic indicator for GD risk. In this commentary, our objectives are twofold: (1) to underscore the conceptual challenges of employing User-Avatar Bond for conceptualizing and diagnosing GD risk, and (2) to expound upon what we perceive as a misguided application of supervised machine learning techniques by the authors from a methodological standpoint.</p>","PeriodicalId":15049,"journal":{"name":"Journal of Behavioral Addictions","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral Addictions","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2006.2024.00032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
In their study, Stavropoulos et al. (2023) capitalized on supervised machine learning and a longitudinal design and reported that the User-Avatar Bond could be accurately employed to detect Gaming Disorder (GD) risk in a community sample of gamers. The authors suggested that the User-Avatar Bond is a "digital phenotype" that could be used as a diagnostic indicator for GD risk. In this commentary, our objectives are twofold: (1) to underscore the conceptual challenges of employing User-Avatar Bond for conceptualizing and diagnosing GD risk, and (2) to expound upon what we perceive as a misguided application of supervised machine learning techniques by the authors from a methodological standpoint.
期刊介绍:
The aim of Journal of Behavioral Addictions is to create a forum for the scientific information exchange with regard to behavioral addictions. The journal is a broad focused interdisciplinary one that publishes manuscripts on different approaches of non-substance addictions, research reports focusing on the addictive patterns of various behaviors, especially disorders of the impulsive-compulsive spectrum, and also publishes reviews in these topics. Coverage ranges from genetic and neurobiological research through psychological and clinical psychiatric approaches to epidemiological, sociological and anthropological aspects.