User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution.

IF 6.6 1区 医学 Q1 PSYCHIATRY
Alexandre Infanti, Alessandro Giardina, Josip Razum, Daniel L King, Stephanie Baggio, Jeffrey G Snodgrass, Matthew Vowels, Adriano Schimmenti, Orsolya Király, Hans-Juergen Rumpf, Claus Vögele, Joël Billieux
{"title":"User-avatar bond as diagnostic indicator for gaming disorder: A word on the side of caution.","authors":"Alexandre Infanti, Alessandro Giardina, Josip Razum, Daniel L King, Stephanie Baggio, Jeffrey G Snodgrass, Matthew Vowels, Adriano Schimmenti, Orsolya Király, Hans-Juergen Rumpf, Claus Vögele, Joël Billieux","doi":"10.1556/2006.2024.00032","DOIUrl":null,"url":null,"abstract":"<p><p>In their study, Stavropoulos et al. (2023) capitalized on supervised machine learning and a longitudinal design and reported that the User-Avatar Bond could be accurately employed to detect Gaming Disorder (GD) risk in a community sample of gamers. The authors suggested that the User-Avatar Bond is a \"digital phenotype\" that could be used as a diagnostic indicator for GD risk. In this commentary, our objectives are twofold: (1) to underscore the conceptual challenges of employing User-Avatar Bond for conceptualizing and diagnosing GD risk, and (2) to expound upon what we perceive as a misguided application of supervised machine learning techniques by the authors from a methodological standpoint.</p>","PeriodicalId":15049,"journal":{"name":"Journal of Behavioral Addictions","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Behavioral Addictions","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1556/2006.2024.00032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0

Abstract

In their study, Stavropoulos et al. (2023) capitalized on supervised machine learning and a longitudinal design and reported that the User-Avatar Bond could be accurately employed to detect Gaming Disorder (GD) risk in a community sample of gamers. The authors suggested that the User-Avatar Bond is a "digital phenotype" that could be used as a diagnostic indicator for GD risk. In this commentary, our objectives are twofold: (1) to underscore the conceptual challenges of employing User-Avatar Bond for conceptualizing and diagnosing GD risk, and (2) to expound upon what we perceive as a misguided application of supervised machine learning techniques by the authors from a methodological standpoint.

用户头像绑定作为游戏障碍的诊断指标:谨慎行事。
在他们的研究中,Stavropoulos 等人(2023 年)利用有监督的机器学习和纵向设计,报告了用户-阿凡达债券可以准确地用于检测社区游戏玩家样本中的游戏障碍(GD)风险。作者认为,"用户-阿凡达债券 "是一种 "数字表型",可用作 GD 风险的诊断指标。在这篇评论中,我们的目标有两个:(1)强调使用 "用户-阿凡达债券 "概念化和诊断 GD 风险所面临的概念挑战;(2)从方法论的角度阐述我们所认为的作者对监督机器学习技术的错误应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.30
自引率
7.70%
发文量
91
审稿时长
20 weeks
期刊介绍: The aim of Journal of Behavioral Addictions is to create a forum for the scientific information exchange with regard to behavioral addictions. The journal is a broad focused interdisciplinary one that publishes manuscripts on different approaches of non-substance addictions, research reports focusing on the addictive patterns of various behaviors, especially disorders of the impulsive-compulsive spectrum, and also publishes reviews in these topics. Coverage ranges from genetic and neurobiological research through psychological and clinical psychiatric approaches to epidemiological, sociological and anthropological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信