{"title":"Paeonol regulates glycolytic metabolism by downregulating BACH1 to ameliorate stemness, angiogenesis, and EMT in SiHa cervical cancer cells.","authors":"Shaoqin Sheng, Jing Xu, Danhong Hu, Weiwei Qian, Xiangqian Xu, Jing He","doi":"10.14670/HH-18-844","DOIUrl":null,"url":null,"abstract":"<p><p>As a common reproductive malignancy of the female reproductive system, cervical cancer has increasingly become a public health concern. Paeonol, which is a natural phenolic monomer, has been found to possess substantial anticancer effects in some human cancers. The present study was conceived to explore the role and mechanism of paeonol in cervical cancer. Initially, the cytotoxicity of paeonol on immortalized H8 cervical epithelial cells and the proliferation of SiHa cervical cancer cells with paeonol treatment were detected using the CCK-8 assay. Cell stemness was assessed with the spheroid formation assay while western blot was applied for the measurement of proteins associated with cell stemness. The tube formation assay was used to detect the angiogenesis of human umbilical vein endothelial cells (HUVECs) and western blot was used to estimate the expression of EMT- and angiogenesis-related proteins. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of cells were appraised via a Seahorse XFe24 Flux Analyzer. Lactate production, glucose consumption, and ATP levels were evaluated with corresponding assay kits. Western blot was applied for the evaluation of GLUT1 and HK2. The mRNA and protein expression of BACH1 before and after transfection were detected using RT-qPCR and western blot. The luciferase reporter assay was used to detect the activities of GLUT1 and HK2 promoters. In this study, we found that paeonol inhibited cell proliferation, cell stemness, EMT progress, angiogenesis, and glycolysis in cervical cancer via downregulating BACH1. In summary, paeonol impeded the progression of cervical cancer by regulating glycolytic metabolism through the inhibition of BACH1.</p>","PeriodicalId":13164,"journal":{"name":"Histology and histopathology","volume":" ","pages":"18844"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Histology and histopathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.14670/HH-18-844","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As a common reproductive malignancy of the female reproductive system, cervical cancer has increasingly become a public health concern. Paeonol, which is a natural phenolic monomer, has been found to possess substantial anticancer effects in some human cancers. The present study was conceived to explore the role and mechanism of paeonol in cervical cancer. Initially, the cytotoxicity of paeonol on immortalized H8 cervical epithelial cells and the proliferation of SiHa cervical cancer cells with paeonol treatment were detected using the CCK-8 assay. Cell stemness was assessed with the spheroid formation assay while western blot was applied for the measurement of proteins associated with cell stemness. The tube formation assay was used to detect the angiogenesis of human umbilical vein endothelial cells (HUVECs) and western blot was used to estimate the expression of EMT- and angiogenesis-related proteins. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of cells were appraised via a Seahorse XFe24 Flux Analyzer. Lactate production, glucose consumption, and ATP levels were evaluated with corresponding assay kits. Western blot was applied for the evaluation of GLUT1 and HK2. The mRNA and protein expression of BACH1 before and after transfection were detected using RT-qPCR and western blot. The luciferase reporter assay was used to detect the activities of GLUT1 and HK2 promoters. In this study, we found that paeonol inhibited cell proliferation, cell stemness, EMT progress, angiogenesis, and glycolysis in cervical cancer via downregulating BACH1. In summary, paeonol impeded the progression of cervical cancer by regulating glycolytic metabolism through the inhibition of BACH1.
期刊介绍:
HISTOLOGY AND HISTOPATHOLOGY is a peer-reviewed international journal, the purpose of which is to publish original and review articles in all fields of the microscopical morphology, cell biology and tissue engineering; high quality is the overall consideration. Its format is the standard international size of 21 x 27.7 cm. One volume is published every year (more than 1,300 pages, approximately 90 original works and 40 reviews). Each volume consists of 12 numbers published monthly online. The printed version of the journal includes 4 books every year; each of them compiles 3 numbers previously published online.