The role of advanced energy management strategies to operate flexibility sources in Renewable Energy Communities

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Antonio Gallo, Alfonso Capozzoli
{"title":"The role of advanced energy management strategies to operate flexibility sources in Renewable Energy Communities","authors":"Antonio Gallo,&nbsp;Alfonso Capozzoli","doi":"10.1016/j.enbuild.2024.115043","DOIUrl":null,"url":null,"abstract":"<div><div>Renewable Energy Communities (REC) can largely contribute to building decarbonization targets and provide flexibility through the adoption of advanced control strategies of the energy systems. This work investigates how the role of flexibility sources will be impacted by shifting towards advanced control strategies under a high penetration of variable Renewable Energy Sources, in the following years. A large residential area with diverse energy systems, building envelope configurations, and energy demand patterns is modeled with the simulation environment RECsim, a virtual testbed for the implementation of energy management strategies in REC. Photovoltaic (PV) panels, Battery Energy Storage and Thermal Energy Storage (TES) of different sizes for each household provide a realistic description of a REC which includes both consumers and prosumers.</div><div>This study explores a scenario in which advanced controllers based on Deep Reinforcement Learning (DRL) replace existing Rule-Based Controllers in building energy systems across a significant number of buildings. These control policies are simulated under three different scenarios that consider consumers with different pricing schemes and TES penetration.</div><div>Efficient control strategies, have demonstrated significant potential, regardless of the presence of thermal storage and ToU pricing schemes, in reducing energy demand by 12.6%, cutting energy costs by 20.8%, and enhancing self-sufficiency and self-consumption, with minimal impact on Shared Energy. Implementing a flat tariff scheme under DRL enables consumers to increase their energy demand during periods of PV generation, which is particularly advantageous in a REC. Also, this approach lowers overall energy demand by 12.6% and boosts self-sufficiency, and it also decreases electricity exports from the REC to the grid by 18.2% compared to a ToU tariff scheme. When using ToU tariffs, thermal storage can be used to achieve cost savings, but total Shared Energy decreases, as do self-sufficiency and self-consumption of the REC. The results indicate that in a REC with high variable renewable energy and decentralized control, consumers using TES and ToU tariffs with peak prices during high irradiance periods may not be beneficial for the grid compliance.</div><div>In conclusion, the coupling between DRL and thermal storage should be supported by more innovative pricing schemes for RECs and/or coordinated energy management, although it requires advanced communication and monitoring infrastructure.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"325 ","pages":"Article 115043"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824011599","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Renewable Energy Communities (REC) can largely contribute to building decarbonization targets and provide flexibility through the adoption of advanced control strategies of the energy systems. This work investigates how the role of flexibility sources will be impacted by shifting towards advanced control strategies under a high penetration of variable Renewable Energy Sources, in the following years. A large residential area with diverse energy systems, building envelope configurations, and energy demand patterns is modeled with the simulation environment RECsim, a virtual testbed for the implementation of energy management strategies in REC. Photovoltaic (PV) panels, Battery Energy Storage and Thermal Energy Storage (TES) of different sizes for each household provide a realistic description of a REC which includes both consumers and prosumers.
This study explores a scenario in which advanced controllers based on Deep Reinforcement Learning (DRL) replace existing Rule-Based Controllers in building energy systems across a significant number of buildings. These control policies are simulated under three different scenarios that consider consumers with different pricing schemes and TES penetration.
Efficient control strategies, have demonstrated significant potential, regardless of the presence of thermal storage and ToU pricing schemes, in reducing energy demand by 12.6%, cutting energy costs by 20.8%, and enhancing self-sufficiency and self-consumption, with minimal impact on Shared Energy. Implementing a flat tariff scheme under DRL enables consumers to increase their energy demand during periods of PV generation, which is particularly advantageous in a REC. Also, this approach lowers overall energy demand by 12.6% and boosts self-sufficiency, and it also decreases electricity exports from the REC to the grid by 18.2% compared to a ToU tariff scheme. When using ToU tariffs, thermal storage can be used to achieve cost savings, but total Shared Energy decreases, as do self-sufficiency and self-consumption of the REC. The results indicate that in a REC with high variable renewable energy and decentralized control, consumers using TES and ToU tariffs with peak prices during high irradiance periods may not be beneficial for the grid compliance.
In conclusion, the coupling between DRL and thermal storage should be supported by more innovative pricing schemes for RECs and/or coordinated energy management, although it requires advanced communication and monitoring infrastructure.
先进的能源管理战略在可再生能源社区灵活运行能源方面的作用
可再生能源社区(REC)在很大程度上有助于实现建筑脱碳目标,并通过采用先进的能源系统控制策略提供灵活性。这项研究探讨了在可变可再生能源高度渗透的情况下,灵活性资源的作用将如何受到转向先进控制策略的影响。模拟环境 RECsim 是一个用于在 REC 中实施能源管理策略的虚拟试验平台,它模拟了一个具有不同能源系统、建筑围护结构和能源需求模式的大型住宅区。每户不同大小的光伏(PV)板、电池储能和热能储能(TES)为 REC 提供了真实的描述,其中既包括消费者,也包括生产者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信