Enhancing classification efficiency in capsule networks through windowed routing: tackling gradient vanishing, dynamic routing, and computational complexity challenges

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Gangqi Chen, Zhaoyong Mao, Junge Shen, Dongdong Hou
{"title":"Enhancing classification efficiency in capsule networks through windowed routing: tackling gradient vanishing, dynamic routing, and computational complexity challenges","authors":"Gangqi Chen, Zhaoyong Mao, Junge Shen, Dongdong Hou","doi":"10.1007/s40747-024-01640-8","DOIUrl":null,"url":null,"abstract":"<p>Capsule networks overcome the two drawbacks of convolutional neural networks: weak rotated object recognition and poor spatial discrimination. However, they still have encountered problems with complex images, including high computational cost and limited accuracy. To address these challenges, this work has developed effective solutions. Specifically, a novel windowed dynamic up-and-down attention routing process is first introduced, which can effectively reduce the computational complexity from quadratic to linear order. A novel deconvolution-based decoder is also used to further reduce the computational complexity. Then, a novel LayerNorm strategy is used to pre-process neuron values in the squash function. This prevents saturation and mitigates the gradient vanishing problem. In addition, a novel gradient-friendly network structure is developed to facilitate the extraction of complex features with deeper networks. Experiments show that our methods are effective and competitive, outperforming existing techniques.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"70 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01640-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Capsule networks overcome the two drawbacks of convolutional neural networks: weak rotated object recognition and poor spatial discrimination. However, they still have encountered problems with complex images, including high computational cost and limited accuracy. To address these challenges, this work has developed effective solutions. Specifically, a novel windowed dynamic up-and-down attention routing process is first introduced, which can effectively reduce the computational complexity from quadratic to linear order. A novel deconvolution-based decoder is also used to further reduce the computational complexity. Then, a novel LayerNorm strategy is used to pre-process neuron values in the squash function. This prevents saturation and mitigates the gradient vanishing problem. In addition, a novel gradient-friendly network structure is developed to facilitate the extraction of complex features with deeper networks. Experiments show that our methods are effective and competitive, outperforming existing techniques.

通过窗口路由提高胶囊网络的分类效率:应对梯度消失、动态路由和计算复杂性挑战
胶囊网络克服了卷积神经网络的两个缺点:旋转物体识别能力弱和空间辨别能力差。然而,它们在处理复杂图像时仍会遇到计算成本高、准确性有限等问题。为了应对这些挑战,本研究开发了有效的解决方案。具体来说,首先引入了一种新颖的窗口动态上下关注路由过程,它能有效地将计算复杂度从二次阶降低到线性阶。此外,还采用了一种基于解卷积的新型解码器,进一步降低了计算复杂度。然后,使用一种新颖的 LayerNorm 策略对压扁函数中的神经元值进行预处理。这可以防止饱和并缓解梯度消失问题。此外,我们还开发了一种新颖的梯度友好型网络结构,以便于用更深的网络提取复杂的特征。实验表明,我们的方法既有效又有竞争力,优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信