Choon-Myung Lee , Ho Young Lee , Zachery R. Jarrell , M. Ryan Smith , Dean P. Jones , Young-Mi Go
{"title":"Mechanistic role for mTORC1 signaling in profibrotic toxicity of low-dose cadmium","authors":"Choon-Myung Lee , Ho Young Lee , Zachery R. Jarrell , M. Ryan Smith , Dean P. Jones , Young-Mi Go","doi":"10.1016/j.taap.2024.117159","DOIUrl":null,"url":null,"abstract":"<div><div>Cadmium (Cd) is a toxic environmental metal that occurs naturally in food and drinking water. Cd is of increasing concern to human health due to its association with age-related diseases and long biological half-life. Previous studies show that low-dose Cd exposure via drinking water induces mechanistic target of rapamycin complex 1 (mTORC1) signaling in mice; however, the role of mTORC1 pathway in Cd-induced pro-fibrotic responses has not been established. In the present study, we used human lung fibroblasts to examine whether inhibiting the mTORC1 pathway prevents lung fibrosis signaling induced by low-dose Cd exposure. Results show that rapamycin, a pharmacological inhibitor of mTORC1, inhibited Cd-dependent phosphorylation of ribosomal protein S6, a downstream marker of mTORC1 activation. Rapamycin also decreased Cd-dependent increases in pro-fibrotic markers, α-smooth muscle actin, collagen 1α1 and fibronectin. Cd activated mitochondrial spare respiratory capacity in association with increased cell proliferation. Rapamycin decreased these responses, showing that mTORC1 signaling supports mitochondrial energy supply for cell proliferation, an important step in fibroblast trans-differentiation into myofibroblasts. Collectively, these results establish a key mechanistic role for mTORC1 activation in environmental Cd-dependent lung fibrosis.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"494 ","pages":"Article 117159"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X24003582","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) is a toxic environmental metal that occurs naturally in food and drinking water. Cd is of increasing concern to human health due to its association with age-related diseases and long biological half-life. Previous studies show that low-dose Cd exposure via drinking water induces mechanistic target of rapamycin complex 1 (mTORC1) signaling in mice; however, the role of mTORC1 pathway in Cd-induced pro-fibrotic responses has not been established. In the present study, we used human lung fibroblasts to examine whether inhibiting the mTORC1 pathway prevents lung fibrosis signaling induced by low-dose Cd exposure. Results show that rapamycin, a pharmacological inhibitor of mTORC1, inhibited Cd-dependent phosphorylation of ribosomal protein S6, a downstream marker of mTORC1 activation. Rapamycin also decreased Cd-dependent increases in pro-fibrotic markers, α-smooth muscle actin, collagen 1α1 and fibronectin. Cd activated mitochondrial spare respiratory capacity in association with increased cell proliferation. Rapamycin decreased these responses, showing that mTORC1 signaling supports mitochondrial energy supply for cell proliferation, an important step in fibroblast trans-differentiation into myofibroblasts. Collectively, these results establish a key mechanistic role for mTORC1 activation in environmental Cd-dependent lung fibrosis.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.