Wenjie Xia , Ilianna Drositi , Tomasz Pawel Czaja , Matias Via , Lilia Ahrné
{"title":"Towards hybrid protein foods: Heat- and acid-induced hybrid gels formed from micellar casein and pea protein","authors":"Wenjie Xia , Ilianna Drositi , Tomasz Pawel Czaja , Matias Via , Lilia Ahrné","doi":"10.1016/j.foodres.2024.115326","DOIUrl":null,"url":null,"abstract":"<div><div>Given the rising demand for more sustainable, cookable dairy alternatives, this research explores the formation and characteristics of heat- and acid-induced gels combining micellar casein and pea protein. Protein dispersions (4 % w/w) of commercial micellar casein isolate and pea protein isolate were prepared and preheated (95°C, 30 min) separately before mixing in varying ratios (75:25 %, 50:50 %, and 25:75 % w/w). After emulsifying with milk fat (3.5 % w/w), the protein mixtures were heated to 80 °C and acidified to pH 5.2 (citric acid). The resultant coagula were pressed, drained, and molded to obtain the final gel. It was observed that adding pea protein led to a higher yield of coagula with more serum retained. As the proportion of pea protein increased, the total solids (TS), protein, and fat content of the gels decreased linearly. The micellar casein gel showed significantly higher hardness, elasticity, and chewiness than the gels containing pea protein. Moreover, the micellar casein gel did not show clear fracture behavior under large deformation, while the gels containing pea protein were more prone to rupture. These textural differences were explained by the changes in gel compositions, protein interactions, and gel microstructure. The composition and textural properties of hybrid gels showed a strong linear relationship with pea protein fractions, showing the possibility of customizing gel properties. Notably, the hybrid gel containing 25 % pea protein exhibited promising characteristics, closely resembling those of the commercial dairy paneer product.</div></div>","PeriodicalId":323,"journal":{"name":"Food Research International","volume":"198 ","pages":"Article 115326"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Research International","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963996924013966","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Given the rising demand for more sustainable, cookable dairy alternatives, this research explores the formation and characteristics of heat- and acid-induced gels combining micellar casein and pea protein. Protein dispersions (4 % w/w) of commercial micellar casein isolate and pea protein isolate were prepared and preheated (95°C, 30 min) separately before mixing in varying ratios (75:25 %, 50:50 %, and 25:75 % w/w). After emulsifying with milk fat (3.5 % w/w), the protein mixtures were heated to 80 °C and acidified to pH 5.2 (citric acid). The resultant coagula were pressed, drained, and molded to obtain the final gel. It was observed that adding pea protein led to a higher yield of coagula with more serum retained. As the proportion of pea protein increased, the total solids (TS), protein, and fat content of the gels decreased linearly. The micellar casein gel showed significantly higher hardness, elasticity, and chewiness than the gels containing pea protein. Moreover, the micellar casein gel did not show clear fracture behavior under large deformation, while the gels containing pea protein were more prone to rupture. These textural differences were explained by the changes in gel compositions, protein interactions, and gel microstructure. The composition and textural properties of hybrid gels showed a strong linear relationship with pea protein fractions, showing the possibility of customizing gel properties. Notably, the hybrid gel containing 25 % pea protein exhibited promising characteristics, closely resembling those of the commercial dairy paneer product.
期刊介绍:
Food Research International serves as a rapid dissemination platform for significant and impactful research in food science, technology, engineering, and nutrition. The journal focuses on publishing novel, high-quality, and high-impact review papers, original research papers, and letters to the editors across various disciplines in the science and technology of food. Additionally, it follows a policy of publishing special issues on topical and emergent subjects in food research or related areas. Selected, peer-reviewed papers from scientific meetings, workshops, and conferences on the science, technology, and engineering of foods are also featured in special issues.