Encapsulation of yarrow phenolic compounds in lupin protein nanoemulsions increases stability during gastrointestinal transit and delivery in the colon
María de las Nieves Siles-Sánchez , Laura Jaime , Milena Corredig , Susana Santoyo , Elena Arranz
{"title":"Encapsulation of yarrow phenolic compounds in lupin protein nanoemulsions increases stability during gastrointestinal transit and delivery in the colon","authors":"María de las Nieves Siles-Sánchez , Laura Jaime , Milena Corredig , Susana Santoyo , Elena Arranz","doi":"10.1016/j.fhfh.2024.100186","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to assess the behaviour of phenolic compounds from yarrow extract encapsulated in nanoemulsions during <em>in vitro</em> gastrointestinal digestion. Oil-in-water nanoemulsions were developed using grape seed oil and lupin protein (LPI) as oil phase and emulsifier, respectively. The use of 6 % LPI including 1 mg/mL of yarrow extract resulted in nanoemulsions with a homogeneous particle size distribution (200 nm) and an encapsulation efficiency of 85.6 %. During <em>in vitro</em> gastrointestinal digestion, most of the phenolics remained encapsulated, being protected from degradation. The <em>in vitro</em> bioavailability of the encapsulated phenolics was measured using a cell co-culture model (Caco-2/HT-29MTX). In this regard, nanoemulsions did not increase the bioavailability of yarrow phenolics, instead, they promoted their access to the colon. Finally, the antiproliferative activity was determined in Caco-2 cells, observing that the apical fraction inhibited cancer cells, indicating the bioefficacy of the non-absorbed phenolics. Thus, this study underscores the potential of LPI-stabilized nanoemulsions as a vehicle for protecting and delivering yarrow phenolics to the colon.</div></div>","PeriodicalId":12385,"journal":{"name":"Food Hydrocolloids for Health","volume":"6 ","pages":"Article 100186"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Hydrocolloids for Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667025924000116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to assess the behaviour of phenolic compounds from yarrow extract encapsulated in nanoemulsions during in vitro gastrointestinal digestion. Oil-in-water nanoemulsions were developed using grape seed oil and lupin protein (LPI) as oil phase and emulsifier, respectively. The use of 6 % LPI including 1 mg/mL of yarrow extract resulted in nanoemulsions with a homogeneous particle size distribution (200 nm) and an encapsulation efficiency of 85.6 %. During in vitro gastrointestinal digestion, most of the phenolics remained encapsulated, being protected from degradation. The in vitro bioavailability of the encapsulated phenolics was measured using a cell co-culture model (Caco-2/HT-29MTX). In this regard, nanoemulsions did not increase the bioavailability of yarrow phenolics, instead, they promoted their access to the colon. Finally, the antiproliferative activity was determined in Caco-2 cells, observing that the apical fraction inhibited cancer cells, indicating the bioefficacy of the non-absorbed phenolics. Thus, this study underscores the potential of LPI-stabilized nanoemulsions as a vehicle for protecting and delivering yarrow phenolics to the colon.