Optimized design and comparative analysis of double-glazed photovoltaic windows for enhanced light harvesting and energy efficiency in cold regions of China
IF 6.6 2区 工程技术Q1 CONSTRUCTION & BUILDING TECHNOLOGY
{"title":"Optimized design and comparative analysis of double-glazed photovoltaic windows for enhanced light harvesting and energy efficiency in cold regions of China","authors":"Gang Yao, Daojing Ding, Chao Xie, Haolan Tan","doi":"10.1016/j.enbuild.2024.115011","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the daylighting performance and energy efficiency optimization strategies of double-glazed photovoltaic windows (DS-STPV) in cold regions of China. By conducting a comprehensive comparative analysis with traditional and energy-efficient window systems, this research aims to identify high-efficiency building solutions tailored to extreme climatic conditions. Amidst the escalating global energy demand and the pressing need for energy conservation and emission reduction, Building-Integrated Photovoltaic (BIPV) technology is increasingly recognized for its potential and value as a critical method for harnessing green energy. However, the widespread adoption of BIPV technology faces several challenges, including cost-effectiveness, conversion efficiency, system stability, and architectural aesthetic integration. Utilizing the T&A House from the 3rd International Solar Decathlon as an empirical case study, this research employs Ecotect and DesignBuilder simulation software to systematically evaluate the daylighting effect and energy performance of DS-STPV. The analysis considers various key design parameters, including photovoltaic cell coverage, window orientation, and window-to-wall ratio. Through refined modeling and multi-dimensional analysis, this study aims to identify the optimal design configurations of DS-STPV windows in cold regions, with the goal of simultaneously achieving superior natural lighting quality and significant building energy efficiency. The findings indicate that a south-facing DS-STPV window design with approximately 30% photovoltaic cell coverage and a window-to-wall ratio of 30% effectively balances daylighting requirements and energy efficiency in cold regions of China. This design strategy not only ensures an abundance of natural light in the room, but also significantly reduces the building’s energy consumption, proving the superior performance of DS-STPV windows in cold climates. In addition, the unique optical properties of DS-STPV windows reduce glare, further improving the overall quality of the indoor environment. In summary, this study provides a robust scientific foundation for the application of DS-STPV windows in cold regions, offering practical guidance and reference for optimizing energy efficiency and facilitating green transformation in future building design.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"325 ","pages":"Article 115011"},"PeriodicalIF":6.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778824011277","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the daylighting performance and energy efficiency optimization strategies of double-glazed photovoltaic windows (DS-STPV) in cold regions of China. By conducting a comprehensive comparative analysis with traditional and energy-efficient window systems, this research aims to identify high-efficiency building solutions tailored to extreme climatic conditions. Amidst the escalating global energy demand and the pressing need for energy conservation and emission reduction, Building-Integrated Photovoltaic (BIPV) technology is increasingly recognized for its potential and value as a critical method for harnessing green energy. However, the widespread adoption of BIPV technology faces several challenges, including cost-effectiveness, conversion efficiency, system stability, and architectural aesthetic integration. Utilizing the T&A House from the 3rd International Solar Decathlon as an empirical case study, this research employs Ecotect and DesignBuilder simulation software to systematically evaluate the daylighting effect and energy performance of DS-STPV. The analysis considers various key design parameters, including photovoltaic cell coverage, window orientation, and window-to-wall ratio. Through refined modeling and multi-dimensional analysis, this study aims to identify the optimal design configurations of DS-STPV windows in cold regions, with the goal of simultaneously achieving superior natural lighting quality and significant building energy efficiency. The findings indicate that a south-facing DS-STPV window design with approximately 30% photovoltaic cell coverage and a window-to-wall ratio of 30% effectively balances daylighting requirements and energy efficiency in cold regions of China. This design strategy not only ensures an abundance of natural light in the room, but also significantly reduces the building’s energy consumption, proving the superior performance of DS-STPV windows in cold climates. In addition, the unique optical properties of DS-STPV windows reduce glare, further improving the overall quality of the indoor environment. In summary, this study provides a robust scientific foundation for the application of DS-STPV windows in cold regions, offering practical guidance and reference for optimizing energy efficiency and facilitating green transformation in future building design.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.