{"title":"Quality-driven design of deep neural network hardware accelerators for low power CPS and IoT applications","authors":"Yahya Jan, Lech Jóźwiak","doi":"10.1016/j.micpro.2024.105119","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the results of our analysis of the main problems that have to be solved in the design of highly parallel high-performance accelerators for Deep Neural Networks (DNNs) used in low power Cyber–Physical System (CPS) and Internet of Things (IoT) devices, in application areas such as smart automotive, health and smart services in social networks (Facebook, Instagram, X/Twitter, etc.). Our analysis demonstrates that to arrive a to high-quality DNN accelerator architecture, complex mutual trade-offs have to be resolved among the accelerator micro- and macro-architecture, and the corresponding memory and communication architectures, as well as among the performance, power consumption and area. Therefore, we developed a multi-processor accelerator design methodology involving an automatic design-space exploration (DSE) framework that enables a very efficient construction and analysis of DNN accelerator architectures, as well as an adequate trade-off exploitation. To satisfy the low power demands of IoT devices, we extend our quality-driven model-based multi-processor accelerator design methodology with some novel power optimization techniques at the Processor’s and memory exploration stages. Our proposed power optimization techniques at the processor’s exploration stage achieve up to 66.5% reduction in power consumption, while our proposed data reuse techniques avoid up to 85.92% of redundant memory accesses thereby reducing the power consumption of accelerator necessary for low-power IoT applications. Currently, we are beginning to apply this methodology with the proposed power optimization techniques to the design of low-power DNN accelerators for IoT applications.</div></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":"111 ","pages":"Article 105119"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933124001145","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the results of our analysis of the main problems that have to be solved in the design of highly parallel high-performance accelerators for Deep Neural Networks (DNNs) used in low power Cyber–Physical System (CPS) and Internet of Things (IoT) devices, in application areas such as smart automotive, health and smart services in social networks (Facebook, Instagram, X/Twitter, etc.). Our analysis demonstrates that to arrive a to high-quality DNN accelerator architecture, complex mutual trade-offs have to be resolved among the accelerator micro- and macro-architecture, and the corresponding memory and communication architectures, as well as among the performance, power consumption and area. Therefore, we developed a multi-processor accelerator design methodology involving an automatic design-space exploration (DSE) framework that enables a very efficient construction and analysis of DNN accelerator architectures, as well as an adequate trade-off exploitation. To satisfy the low power demands of IoT devices, we extend our quality-driven model-based multi-processor accelerator design methodology with some novel power optimization techniques at the Processor’s and memory exploration stages. Our proposed power optimization techniques at the processor’s exploration stage achieve up to 66.5% reduction in power consumption, while our proposed data reuse techniques avoid up to 85.92% of redundant memory accesses thereby reducing the power consumption of accelerator necessary for low-power IoT applications. Currently, we are beginning to apply this methodology with the proposed power optimization techniques to the design of low-power DNN accelerators for IoT applications.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.