Chenxin Su , Bo Li , Wei Zhang , Wei Tian , Wenhe Liao
{"title":"An analysis and reliability-based optimization design method of trajectory accuracy for industrial robots considering parametric uncertainties","authors":"Chenxin Su , Bo Li , Wei Zhang , Wei Tian , Wenhe Liao","doi":"10.1016/j.ress.2024.110626","DOIUrl":null,"url":null,"abstract":"<div><div>To address the challenges of poor trajectory accuracy in industrial robots, which has emerged as a technological bottleneck hindering further robots’ applications in high-precision manufacturing industries, this paper proposes a method for the analysis and reliability-based optimization design for industrial robots’ trajectory accuracy considering parametric uncertainties. Firstly, the dynamic equation of an articulated industrial robot with six degrees of freedom is derived, incorporating the Stribeck joint friction model, followed by the uncertain parameter identification of this dynamic model. Subsequently, an uncertainty simulation system for the robot is established based on the constructed dynamic model and the sensitivity of system uncertain parameters to the robot trajectory accuracy is analyzed, where 10 key parameters are obtained among 54 uncertain parameters. Finally, a reliability-based multi-objective optimization design methodology is proposed synthesizing the robot trajectory accuracy, manufacturing cost, and quality loss, to achieve tolerance design of the robot's parameters, and enables minimizing costs and quality losses while ensuring the robot's trajectory accuracy reliability. The performance and practicality of the proposed method were validated using a six-degree-of-freedom rotary joint serial industrial robot as an example.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110626"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006975","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenges of poor trajectory accuracy in industrial robots, which has emerged as a technological bottleneck hindering further robots’ applications in high-precision manufacturing industries, this paper proposes a method for the analysis and reliability-based optimization design for industrial robots’ trajectory accuracy considering parametric uncertainties. Firstly, the dynamic equation of an articulated industrial robot with six degrees of freedom is derived, incorporating the Stribeck joint friction model, followed by the uncertain parameter identification of this dynamic model. Subsequently, an uncertainty simulation system for the robot is established based on the constructed dynamic model and the sensitivity of system uncertain parameters to the robot trajectory accuracy is analyzed, where 10 key parameters are obtained among 54 uncertain parameters. Finally, a reliability-based multi-objective optimization design methodology is proposed synthesizing the robot trajectory accuracy, manufacturing cost, and quality loss, to achieve tolerance design of the robot's parameters, and enables minimizing costs and quality losses while ensuring the robot's trajectory accuracy reliability. The performance and practicality of the proposed method were validated using a six-degree-of-freedom rotary joint serial industrial robot as an example.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.