{"title":"Daytime radiative cooling using pattern free metal dielectric coating","authors":"Jitendra Kumar Pradhan , Dheeraj Pratap","doi":"10.1016/j.ijleo.2024.172098","DOIUrl":null,"url":null,"abstract":"<div><div>Radiative coolers, which dumps the excess heat to the cold outer space by releasing the thermal radiation through the atmospheric window, have offered an alternate and feasible solution to the conventional coolers that are fuelled on the electricity produced by either using renewal or non-renewal sources like fossil fuels. Particularly, daytime passive radiative coolers have paved the way for many energy free technology that are used in reducing the temperature of building tops, power plants, and water harvesting. In this, we propose a pattern free and large area scalable bi-layered thin film based daytime radiative cooler. The proposed design illustrates an average reflectivity of 98.5% for the solar spectrum, while showing average emittance of 91% within the atmospheric window (8-<span><math><mrow><mn>13</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>). The design consists of thin films of transparent dielectrics such as ZnS or BaF<sub>2</sub> placed on top of a thick glass substrate, that is backed by a thin film of silver. We theoretically obtained a cooling power of 119 W m<sup>−2</sup> with a temperature reduction of 9 °C below the ambient.</div></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"319 ","pages":"Article 172098"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004972","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Radiative coolers, which dumps the excess heat to the cold outer space by releasing the thermal radiation through the atmospheric window, have offered an alternate and feasible solution to the conventional coolers that are fuelled on the electricity produced by either using renewal or non-renewal sources like fossil fuels. Particularly, daytime passive radiative coolers have paved the way for many energy free technology that are used in reducing the temperature of building tops, power plants, and water harvesting. In this, we propose a pattern free and large area scalable bi-layered thin film based daytime radiative cooler. The proposed design illustrates an average reflectivity of 98.5% for the solar spectrum, while showing average emittance of 91% within the atmospheric window (8-). The design consists of thin films of transparent dielectrics such as ZnS or BaF2 placed on top of a thick glass substrate, that is backed by a thin film of silver. We theoretically obtained a cooling power of 119 W m−2 with a temperature reduction of 9 °C below the ambient.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.