{"title":"Combinatorial reduction of set functions and matroid permutations through minor invertible product assignment","authors":"Mario Angelelli","doi":"10.1016/j.laa.2024.11.004","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce an algebraic model, based on the determinantal expansion of the product of two matrices, to test combinatorial reductions of set functions. Each term of the determinantal expansion is deformed through a monomial factor in <em>d</em> indeterminates, whose exponents define a <span><math><msup><mrow><mi>Z</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>-valued set function. By combining the Grassmann-Plücker relations for the two matrices, we derive a family of sparse polynomials, whose factorisation properties in a Laurent polynomial ring are studied and related to information-theoretic notions.</div><div>Under a given genericity condition, we prove the equivalence between combinatorial reductions and determinantal expansions with invertible minor products; specifically, a deformation returns a determinantal expansion if and only if it is induced by a diagonal matrix of units in <span><math><mi>C</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> acting as a kernel in the original determinant expression. This characterisation supports the definition of a new method for checking and recovering combinatorial reductions for matroid permutations.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"705 ","pages":"Pages 89-128"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004178","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce an algebraic model, based on the determinantal expansion of the product of two matrices, to test combinatorial reductions of set functions. Each term of the determinantal expansion is deformed through a monomial factor in d indeterminates, whose exponents define a -valued set function. By combining the Grassmann-Plücker relations for the two matrices, we derive a family of sparse polynomials, whose factorisation properties in a Laurent polynomial ring are studied and related to information-theoretic notions.
Under a given genericity condition, we prove the equivalence between combinatorial reductions and determinantal expansions with invertible minor products; specifically, a deformation returns a determinantal expansion if and only if it is induced by a diagonal matrix of units in acting as a kernel in the original determinant expression. This characterisation supports the definition of a new method for checking and recovering combinatorial reductions for matroid permutations.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.