{"title":"The catabolic - anabolic cycling hormesis model of health and resilience","authors":"Edward J. Calabrese , Mark P. Mattson","doi":"10.1016/j.arr.2024.102588","DOIUrl":null,"url":null,"abstract":"<div><div>A major goal of aging research is to identify ways of extending productive and disease-free lifespans. Here we present the catabolic – anabolic cycling hormesis (CACH) model for optimizing health. The CACH model is based on the concept that cells and organ systems respond to catabolic challenges in ways that bolster their resilience and that an anabolic recovery period is required to effectuate the benefits of the catabolic challenge. As two prominent real-world examples we highlight the literature on the molecular and cellular mechanisms by which physical exercise and intermittent fasting bolster cellular and organismal performance and resilience, and suppress disease processes. Over periods of weeks and months the CACH of exercise and fasting promote optimal health. The hormesis concept is integral to the CACH model and predicts an upper limit to the beneficial effects of catabolic – anabolic cycling that reflects a limit of biological plasticity. This paper extends the hormesis model of health by proposing that 1) it is comprised of two complementary phases: catabolic (adaptive stress responses and conservation of resources) and anabolic (growth and plasticity) and, 2) that CACH is metabolically integrated, quantitatively flexible and dynamically regulated. This model has important implications for future basic and translational research in the fields of aging and related disease processes.</div></div>","PeriodicalId":55545,"journal":{"name":"Ageing Research Reviews","volume":"102 ","pages":"Article 102588"},"PeriodicalIF":12.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568163724004069","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A major goal of aging research is to identify ways of extending productive and disease-free lifespans. Here we present the catabolic – anabolic cycling hormesis (CACH) model for optimizing health. The CACH model is based on the concept that cells and organ systems respond to catabolic challenges in ways that bolster their resilience and that an anabolic recovery period is required to effectuate the benefits of the catabolic challenge. As two prominent real-world examples we highlight the literature on the molecular and cellular mechanisms by which physical exercise and intermittent fasting bolster cellular and organismal performance and resilience, and suppress disease processes. Over periods of weeks and months the CACH of exercise and fasting promote optimal health. The hormesis concept is integral to the CACH model and predicts an upper limit to the beneficial effects of catabolic – anabolic cycling that reflects a limit of biological plasticity. This paper extends the hormesis model of health by proposing that 1) it is comprised of two complementary phases: catabolic (adaptive stress responses and conservation of resources) and anabolic (growth and plasticity) and, 2) that CACH is metabolically integrated, quantitatively flexible and dynamically regulated. This model has important implications for future basic and translational research in the fields of aging and related disease processes.
期刊介绍:
With the rise in average human life expectancy, the impact of ageing and age-related diseases on our society has become increasingly significant. Ageing research is now a focal point for numerous laboratories, encompassing leaders in genetics, molecular and cellular biology, biochemistry, and behavior. Ageing Research Reviews (ARR) serves as a cornerstone in this field, addressing emerging trends.
ARR aims to fill a substantial gap by providing critical reviews and viewpoints on evolving discoveries concerning the mechanisms of ageing and age-related diseases. The rapid progress in understanding the mechanisms controlling cellular proliferation, differentiation, and survival is unveiling new insights into the regulation of ageing. From telomerase to stem cells, and from energy to oxyradical metabolism, we are witnessing an exciting era in the multidisciplinary field of ageing research.
The journal explores the cellular and molecular foundations of interventions that extend lifespan, such as caloric restriction. It identifies the underpinnings of manipulations that extend lifespan, shedding light on novel approaches for preventing age-related diseases. ARR publishes articles on focused topics selected from the expansive field of ageing research, with a particular emphasis on the cellular and molecular mechanisms of the aging process. This includes age-related diseases like cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. The journal also covers applications of basic ageing research to lifespan extension and disease prevention, offering a comprehensive platform for advancing our understanding of this critical field.