Y Langevin, F Poulet, G Piccioni, G Filacchione, C Dumesnil, F Tosi, J Carter, A Barbis, P Haffoud, L Tommasi, M Vincendon, S De Angelis, I Guerri, C Pilorget, S Rodriguez, S Stefani, D Bolsée, M Cisneros, L Van Laeken, N Pereira, A Carapelle
{"title":"Calibration of MAJIS (Moons and Jupiter Imaging Spectrometer). IV. Radiometric calibration (invited).","authors":"Y Langevin, F Poulet, G Piccioni, G Filacchione, C Dumesnil, F Tosi, J Carter, A Barbis, P Haffoud, L Tommasi, M Vincendon, S De Angelis, I Guerri, C Pilorget, S Rodriguez, S Stefani, D Bolsée, M Cisneros, L Van Laeken, N Pereira, A Carapelle","doi":"10.1063/5.0202702","DOIUrl":null,"url":null,"abstract":"<p><p>The MAJIS (Moons and Jupiter Imaging Spectrometer) instrument is an imaging spectrometer on-board the JUICE (JUpiter ICy moons Explorer) spacecraft. MAJIS covers the spectral range from 0.5 to 5.54 μm with two channels [visible-near infrared (VISNIR) and IR]. A comprehensive campaign of on-ground MAJIS calibration was conducted in August and September 2021 in the IAS (Institut d'Astrophysique Spatiale, CNRS/Université Paris-Saclay) facilities. In this article, we present the results relevant for the radiometric calibration of MAJIS. Due to the specific characteristics of the MAJIS detectors (H1RG from Teledyne), an extensive detector characterization campaign was implemented for both the VISNIR and IR detectors before integration so as to validate readout procedures providing precision and accuracy. The characterization also provided critical information on linearity and operability as a function of the integration time and operating temperature. The radiometric calibration of the integrated MAJIS instrument focused on the determination of the instrument transfer function in terms of DN output per unit of radiance for each MAJIS data element as a function of its position in the field of view of MAJIS and its central wavelength. The radiometric calibration of the VISNIR channel required a specific procedure due to stray light at short wavelengths. Observations of an internal calibration source during calibration and after launch (April 14, 2023) showed that there were minor changes in both the VISNIR and IR channels. The instrument transfer functions to be used in flight have been updated on this basis.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0202702","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
The MAJIS (Moons and Jupiter Imaging Spectrometer) instrument is an imaging spectrometer on-board the JUICE (JUpiter ICy moons Explorer) spacecraft. MAJIS covers the spectral range from 0.5 to 5.54 μm with two channels [visible-near infrared (VISNIR) and IR]. A comprehensive campaign of on-ground MAJIS calibration was conducted in August and September 2021 in the IAS (Institut d'Astrophysique Spatiale, CNRS/Université Paris-Saclay) facilities. In this article, we present the results relevant for the radiometric calibration of MAJIS. Due to the specific characteristics of the MAJIS detectors (H1RG from Teledyne), an extensive detector characterization campaign was implemented for both the VISNIR and IR detectors before integration so as to validate readout procedures providing precision and accuracy. The characterization also provided critical information on linearity and operability as a function of the integration time and operating temperature. The radiometric calibration of the integrated MAJIS instrument focused on the determination of the instrument transfer function in terms of DN output per unit of radiance for each MAJIS data element as a function of its position in the field of view of MAJIS and its central wavelength. The radiometric calibration of the VISNIR channel required a specific procedure due to stray light at short wavelengths. Observations of an internal calibration source during calibration and after launch (April 14, 2023) showed that there were minor changes in both the VISNIR and IR channels. The instrument transfer functions to be used in flight have been updated on this basis.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.