Astrocytic calcium signals are associated with exercise-induced fatigue in mice.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Neuroscience Pub Date : 2025-01-09 Epub Date: 2024-11-17 DOI:10.1016/j.neuroscience.2024.11.033
Liyang Xiang, Yulu Zhao, XinRui Li, Ran Shi, Wen Zhou, Xiaohang Xu, Yifan Hu, Qianyun Xu, Yaodan Chen, Jin Ma, Xiao He, Weida Shen
{"title":"Astrocytic calcium signals are associated with exercise-induced fatigue in mice.","authors":"Liyang Xiang, Yulu Zhao, XinRui Li, Ran Shi, Wen Zhou, Xiaohang Xu, Yifan Hu, Qianyun Xu, Yaodan Chen, Jin Ma, Xiao He, Weida Shen","doi":"10.1016/j.neuroscience.2024.11.033","DOIUrl":null,"url":null,"abstract":"<p><p>Exercise-induced fatigue (EF) is characterized by a decline in maximal voluntary muscle force following prolonged physical activity, influenced by both peripheral and central factors. Central fatigue involves complex interactions within the central nervous system (CNS), where astrocytes play a crucial role. This study explores the impact of astrocytic calcium signals on EF. We used adeno-associated viruses (AAV) to express GCaMP7b in astrocytes of the dorsal striatum in mice, allowing us to monitor calcium dynamics. Our findings reveal that EF significantly increases the frequency of spontaneous astrocytic calcium signals. Utilizing genetic tools to either enhance or reduce astrocytic calcium signaling, we observed corresponding decreases and increases in exercise-induced fatigue time, respectively. Furthermore, modulation of astrocytic calcium signals influenced corticostriatal synaptic plasticity, with increased signals impairing and decreased signals ameliorating long-term depression (LTD). These results highlight the pivotal role of astrocytic calcium signaling in the regulation of exercise-induced fatigue and synaptic plasticity in the striatum.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"306-318"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.11.033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/17 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Exercise-induced fatigue (EF) is characterized by a decline in maximal voluntary muscle force following prolonged physical activity, influenced by both peripheral and central factors. Central fatigue involves complex interactions within the central nervous system (CNS), where astrocytes play a crucial role. This study explores the impact of astrocytic calcium signals on EF. We used adeno-associated viruses (AAV) to express GCaMP7b in astrocytes of the dorsal striatum in mice, allowing us to monitor calcium dynamics. Our findings reveal that EF significantly increases the frequency of spontaneous astrocytic calcium signals. Utilizing genetic tools to either enhance or reduce astrocytic calcium signaling, we observed corresponding decreases and increases in exercise-induced fatigue time, respectively. Furthermore, modulation of astrocytic calcium signals influenced corticostriatal synaptic plasticity, with increased signals impairing and decreased signals ameliorating long-term depression (LTD). These results highlight the pivotal role of astrocytic calcium signaling in the regulation of exercise-induced fatigue and synaptic plasticity in the striatum.

星形胶质细胞钙信号调节小鼠运动引起的疲劳
运动诱发疲劳(EF)的特征是在长时间体力活动后最大自主肌力下降,这同时受到外周和中枢因素的影响。中枢疲劳涉及中枢神经系统(CNS)内复杂的相互作用,其中星形胶质细胞起着至关重要的作用。本研究探讨了星形胶质细胞钙信号对 EF 的影响。我们利用腺相关病毒在小鼠背侧纹状体的星形胶质细胞中表达 GCaMP7b,从而监测钙离子的动态变化。我们的研究结果表明,EF 能显著增加星形胶质细胞自发钙信号的频率。利用基因工具增强或减少星形胶质细胞的钙信号,我们观察到运动诱导的疲劳时间分别相应减少和增加。此外,星形胶质细胞钙信号的调节还影响了皮层突触的可塑性,信号增强会损害长期抑制(LTD),信号减弱则会改善长期抑制(LTD)。这些结果凸显了星形胶质细胞钙信号在调节运动引起的疲劳和纹状体突触可塑性中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信