Optimized Signal and Power Integrity of Silicon Interposer for HBM2E in CoWoS Packaging

Kuei-Ju Lin;Chien-Min Lin;Ruey-Beei Wu
{"title":"Optimized Signal and Power Integrity of Silicon Interposer for HBM2E in CoWoS Packaging","authors":"Kuei-Ju Lin;Chien-Min Lin;Ruey-Beei Wu","doi":"10.1109/TSIPI.2024.3487547","DOIUrl":null,"url":null,"abstract":"As high-speed digital systems require faster transmission and computing speed, the impact of complex interconnects in a limited space on the electrical performance of the channel-link system becomes more and more serious. This article aims to optimize the interconnection links between the enhanced second-generation high-bandwidth memory modules and systems on chip (CPU or GPU) for achieving the optimized signal and power integrity. Since the signal lines are susceptible to crosstalk, an improved diagonal-staggering wiring scheme is proposed to reduce the coupling coefficient between the signal lines by at least five times. The contour map for the mismatched systems with the peak distortion analysis is then applied to quickly find the optimal impedance design of lines for the best eye diagram. At a data rate of 6.4 Gb/s with a rise time of 15 ps, the eye height is optimized to be 4.6 times that in the original layout. Finally, the power supply and grounds are interleaved to increase the capacitance and alleviate the power noise through the power delivery network (PDN) in the construction of the four-element voltage regulator module along with the on-chip capacitor and the specific power–ground layers. Modifying the layout scheme in the PDN with reasonable decoupling capacitance can lead to an additional 1.4 times improvement in the eye height over the original design.","PeriodicalId":100646,"journal":{"name":"IEEE Transactions on Signal and Power Integrity","volume":"3 ","pages":"159-168"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Power Integrity","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737688/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As high-speed digital systems require faster transmission and computing speed, the impact of complex interconnects in a limited space on the electrical performance of the channel-link system becomes more and more serious. This article aims to optimize the interconnection links between the enhanced second-generation high-bandwidth memory modules and systems on chip (CPU or GPU) for achieving the optimized signal and power integrity. Since the signal lines are susceptible to crosstalk, an improved diagonal-staggering wiring scheme is proposed to reduce the coupling coefficient between the signal lines by at least five times. The contour map for the mismatched systems with the peak distortion analysis is then applied to quickly find the optimal impedance design of lines for the best eye diagram. At a data rate of 6.4 Gb/s with a rise time of 15 ps, the eye height is optimized to be 4.6 times that in the original layout. Finally, the power supply and grounds are interleaved to increase the capacitance and alleviate the power noise through the power delivery network (PDN) in the construction of the four-element voltage regulator module along with the on-chip capacitor and the specific power–ground layers. Modifying the layout scheme in the PDN with reasonable decoupling capacitance can lead to an additional 1.4 times improvement in the eye height over the original design.
针对 CoWoS 封装中的 HBM2E 优化硅集成电路的信号和功率完整性
随着高速数字系统要求更快的传输和计算速度,有限空间内的复杂互连对通道链路系统电气性能的影响变得越来越严重。本文旨在优化增强型第二代高带宽内存模块与片上系统(CPU 或 GPU)之间的互连链路,以实现优化的信号和电源完整性。由于信号线易受串扰影响,因此提出了一种改进的对角线交错布线方案,可将信号线之间的耦合系数降低至少五倍。然后,应用不匹配系统的等高线图和峰值失真分析,快速找到最佳线路阻抗设计,以获得最佳眼图。在数据速率为 6.4 Gb/s、上升时间为 15 ps 的情况下,眼图高度优化为原始布局的 4.6 倍。最后,在构建四元件稳压器模块时,电源和地线交错排列,以增加电容,并通过功率传输网络(PDN)以及片上电容和特定的电源-地线层减轻功率噪声。利用合理的去耦电容修改 PDN 中的布局方案,可使眼高比原设计提高 1.4 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信