PlFabG improves high-temperature resistance in herbaceous peony by increasing saturated fatty acids

IF 3.9 2区 农林科学 Q1 HORTICULTURE
Ziao Hu, Yi Qian, Jun Tao, Daqiu Zhao
{"title":"PlFabG improves high-temperature resistance in herbaceous peony by increasing saturated fatty acids","authors":"Ziao Hu, Yi Qian, Jun Tao, Daqiu Zhao","doi":"10.1016/j.scienta.2024.113778","DOIUrl":null,"url":null,"abstract":"The herbaceous peony (<ce:italic>Paeonia lactiflora</ce:italic> Pall<ce:italic>.</ce:italic>) is renowned for its striking flowers, which are highly valued in the cut flower industry. However, in the middle and lower reaches of the Yangtze River, the elevated summer temperatures negatively affect the plant's flowering capacity in the subsequent year. 3-oxoacyl-ACP reductase (FabG) is a component of the type II fatty acid synthesis (FAS II) system, where it plays a role in facilitating the production of saturated fatty acids. However, its role in conferring resistance to high-temperature stress remains unclear. In order to investigate the function of <ce:italic>PlFabG</ce:italic> in dealing with high-temperature stress, we isolated <ce:italic>PlFabG</ce:italic> from <ce:italic>P. lactiflora</ce:italic>. The gene contains an open reading frame (ORF) of 780 bp, which encodes 259 amino acids. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of <ce:italic>PlFabG</ce:italic> increased with prolonged exposure to high temperature. Additionally, plants overexpressing <ce:italic>PlFabG</ce:italic> maintained a relatively healthy phenotype under high-temperature stress, whereas plants with silencing <ce:italic>PlFabG</ce:italic> exhibited more severe leaf scorching and wilting under the same conditions. Various physiological indices indicated that <ce:italic>PlFabG</ce:italic> reduced reactive oxygen species (ROS) accumulation and enhanced the saturation of photosystem II. Most importantly, <ce:italic>PlFabG</ce:italic> helped <ce:italic>P. lactiflora</ce:italic> withstand high-temperature stress by increasing the proportion of saturated fatty acids, thereby maintaining cell membrane integrity. These findings elucidate the beneficial role of <ce:italic>PlFabG</ce:italic> in enhancing plant tolerance to high temperature and provide a strong theoretical support for the development of high-temperature tolerance in transgenic <ce:italic>P. lactiflora.</ce:italic>","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"7 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.scienta.2024.113778","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The herbaceous peony (Paeonia lactiflora Pall.) is renowned for its striking flowers, which are highly valued in the cut flower industry. However, in the middle and lower reaches of the Yangtze River, the elevated summer temperatures negatively affect the plant's flowering capacity in the subsequent year. 3-oxoacyl-ACP reductase (FabG) is a component of the type II fatty acid synthesis (FAS II) system, where it plays a role in facilitating the production of saturated fatty acids. However, its role in conferring resistance to high-temperature stress remains unclear. In order to investigate the function of PlFabG in dealing with high-temperature stress, we isolated PlFabG from P. lactiflora. The gene contains an open reading frame (ORF) of 780 bp, which encodes 259 amino acids. Quantitative real-time PCR (qRT-PCR) analysis showed that the expression levels of PlFabG increased with prolonged exposure to high temperature. Additionally, plants overexpressing PlFabG maintained a relatively healthy phenotype under high-temperature stress, whereas plants with silencing PlFabG exhibited more severe leaf scorching and wilting under the same conditions. Various physiological indices indicated that PlFabG reduced reactive oxygen species (ROS) accumulation and enhanced the saturation of photosystem II. Most importantly, PlFabG helped P. lactiflora withstand high-temperature stress by increasing the proportion of saturated fatty acids, thereby maintaining cell membrane integrity. These findings elucidate the beneficial role of PlFabG in enhancing plant tolerance to high temperature and provide a strong theoretical support for the development of high-temperature tolerance in transgenic P. lactiflora.
PlFabG 通过增加饱和脂肪酸提高草本牡丹的耐高温能力
草本牡丹(Paeonia lactiflora Pall.)然而,在长江中下游地区,夏季气温升高会对翌年牡丹的开花能力产生不利影响。3-oxoacyl-ACP 还原酶(FabG)是 II 型脂肪酸合成(FAS II)系统的一个组成部分,它在促进饱和脂肪酸的生成方面发挥着作用。然而,它在赋予抗高温胁迫能力方面的作用仍不清楚。为了研究 PlFabG 在应对高温胁迫中的功能,我们从乳花草中分离出了 PlFabG。该基因包含一个 780 bp 的开放阅读框(ORF),编码 259 个氨基酸。实时定量 PCR(qRT-PCR)分析表明,PlFabG 的表达水平随着高温暴露时间的延长而增加。此外,过表达 PlFabG 的植株在高温胁迫下保持了相对健康的表型,而沉默 PlFabG 的植株在相同条件下表现出更严重的叶片焦枯和萎蔫。各种生理指标表明,PlFabG减少了活性氧(ROS)的积累,提高了光系统II的饱和度。最重要的是,PlFabG 能增加饱和脂肪酸的比例,从而维持细胞膜的完整性,帮助乳花草抵御高温胁迫。这些发现阐明了PlFabG在增强植物耐高温能力方面的有益作用,为转基因乳花草耐高温能力的发展提供了有力的理论支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientia Horticulturae
Scientia Horticulturae 农林科学-园艺
CiteScore
8.60
自引率
4.70%
发文量
796
审稿时长
47 days
期刊介绍: Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信