Garima Rathee, Antonio Puertas-Segura, Jeniffer Blair, Jyotsna Rathee, Tzanko Tzanov
{"title":"Quantum dots@layered double hydroxides: Emerging nanocomposites for multifaceted applications","authors":"Garima Rathee, Antonio Puertas-Segura, Jeniffer Blair, Jyotsna Rathee, Tzanko Tzanov","doi":"10.1016/j.pmatsci.2024.101403","DOIUrl":null,"url":null,"abstract":"Nanomaterials have fascinated experts across numerous fields owing to their intriguing properties and wide-ranging applications. Layered double hydroxides (LDHs) and quantum dots (QDs) are fascinating nanomaterials renowned for their versatility in various consumer products. LDHs are multifunctional two-dimensional nanostructures, whereas QDs are semiconductor nanocrystals with exceptional electronic features. This review explores the synergistic combination of LDHs and QDs in QDs@LDH nanocomposites exploitable across numerous applications. Diverse technologies have been used to customize their morphological and structural features, including ultrasonication, LbL self-assembly, chemical reduction, photochemical processing, microwave-assisted synthesis, and hydro/solvothermal methods. We emphasize the increased surface area, tunable optical properties, improved stability, and enhanced catalytic performance of QDs@LDH nanocomposites that unlock a myriad of biomedical, sensor, energy storage and conversion, optoelectronic, catalytic, environmental, flame retardant, anti-fake detection, paper protection and forensic applications. Mechanistic insights into defect engineering, charge transfer mechanisms, and QD-LDH interactions are provided, elucidating the underlying principles of these nanocomposites’ behavior and functionality.","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":null,"pages":null},"PeriodicalIF":33.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.pmatsci.2024.101403","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanomaterials have fascinated experts across numerous fields owing to their intriguing properties and wide-ranging applications. Layered double hydroxides (LDHs) and quantum dots (QDs) are fascinating nanomaterials renowned for their versatility in various consumer products. LDHs are multifunctional two-dimensional nanostructures, whereas QDs are semiconductor nanocrystals with exceptional electronic features. This review explores the synergistic combination of LDHs and QDs in QDs@LDH nanocomposites exploitable across numerous applications. Diverse technologies have been used to customize their morphological and structural features, including ultrasonication, LbL self-assembly, chemical reduction, photochemical processing, microwave-assisted synthesis, and hydro/solvothermal methods. We emphasize the increased surface area, tunable optical properties, improved stability, and enhanced catalytic performance of QDs@LDH nanocomposites that unlock a myriad of biomedical, sensor, energy storage and conversion, optoelectronic, catalytic, environmental, flame retardant, anti-fake detection, paper protection and forensic applications. Mechanistic insights into defect engineering, charge transfer mechanisms, and QD-LDH interactions are provided, elucidating the underlying principles of these nanocomposites’ behavior and functionality.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.