{"title":"Overweight Leads to an Increase in Vitamin E Absorption and Status in Mice","authors":"Katherine Alvarado‐Ramos, Ángela Bravo‐Núñez, Donato Vairo, Charlotte Sabran, Jean‐François Landrier, Emmanuelle Reboul","doi":"10.1002/mnfr.202400509","DOIUrl":null,"url":null,"abstract":"ScopeThis study investigates whether vitamin E (VE) deficiency in subjects with obesity could, at least partly, be due to a defect in VE intestinal absorption.Methods and resultsMice follow either a high‐fat (HF) or a control (CTL) diet for 12 weeks. The study evaluates their VE status, the expression of genes encoding proteins involved in lipid and fat‐soluble vitamin intestinal absorption, and VE absorption using a γ‐tocopherol‐rich emulsion. HF mice have a weight (+23.0%) and an adiposity index (AI, +157.0) superior to CTL mice (<jats:italic>p</jats:italic> < 0.05). α‐Tocopherol concentrations are higher in both plasma (+45.0%) and liver (+116.9%) of HF mice compared to CTL mice (<jats:italic>p</jats:italic> < 0.05). α‐Tocopherol concentration in the adipose tissue of HF mice is higher than that of CTL mice after correction by the AI (+72.4%, <jats:italic>p</jats:italic> < 0.05). No difference is found in the expression of genes coding for proteins involved in intestinal lipid metabolism in fasting mice. After force‐feeding, γ‐tocopherol plasma concentration is higher in HF mice compared to CTL mice (+181.5% at 1.5 h after force‐feeding, <jats:italic>p</jats:italic> < 0.05).ConclusionHF mice display higher status and more efficient absorption of VE than CTL mice. VE absorption is thus likely not impaired in the early stages of obesity.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"21 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400509","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
ScopeThis study investigates whether vitamin E (VE) deficiency in subjects with obesity could, at least partly, be due to a defect in VE intestinal absorption.Methods and resultsMice follow either a high‐fat (HF) or a control (CTL) diet for 12 weeks. The study evaluates their VE status, the expression of genes encoding proteins involved in lipid and fat‐soluble vitamin intestinal absorption, and VE absorption using a γ‐tocopherol‐rich emulsion. HF mice have a weight (+23.0%) and an adiposity index (AI, +157.0) superior to CTL mice (p < 0.05). α‐Tocopherol concentrations are higher in both plasma (+45.0%) and liver (+116.9%) of HF mice compared to CTL mice (p < 0.05). α‐Tocopherol concentration in the adipose tissue of HF mice is higher than that of CTL mice after correction by the AI (+72.4%, p < 0.05). No difference is found in the expression of genes coding for proteins involved in intestinal lipid metabolism in fasting mice. After force‐feeding, γ‐tocopherol plasma concentration is higher in HF mice compared to CTL mice (+181.5% at 1.5 h after force‐feeding, p < 0.05).ConclusionHF mice display higher status and more efficient absorption of VE than CTL mice. VE absorption is thus likely not impaired in the early stages of obesity.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.