Hyo Chan Lee, Jinju Kim, Hyun Ju Yang, Junhee Yu, Je Hyun Bae
{"title":"Electrochemical Reactions Affected by Electric Double Layer Overlap in Conducting Nanopores","authors":"Hyo Chan Lee, Jinju Kim, Hyun Ju Yang, Junhee Yu, Je Hyun Bae","doi":"10.1021/acs.analchem.4c03956","DOIUrl":null,"url":null,"abstract":"When a potential is applied to an electrode immersed in an electrolyte solution, ions with opposite charges accumulate around the electrode, forming an electrical double layer (EDL). Unlike flat electrodes, nanoporous electrodes with pore sizes comparable to the EDL thickness experience overlapping EDLs, altering the electrochemically effective surface area. Although previous research has primarily examined the ion charging dynamics and EDL formation in nanoporous electrodes, the impact of EDL overlap on Faraday reactions remains underexplored. In this study, we examined the influence of EDL overlap on electrochemical reactions within nanoporous electrodes using chronoamperometry and DC and AC voltammetry. We used the electrolyte concentration, measurement duration, overpotential, and electrode material as variables to determine the relationship between the extent of EDL overlap and the electrochemical reaction. The electrolyte concentration-dependent electrochemical reaction due to the EDL overlap was more pronounced for electrodes with faster potential changes, shorter measurement times, lower overpotentials, and slower catalytic activity. This is a unique nanoporous electrochemical phenomenon that is not observed on flat electrodes. These findings provide insight into the utilization of nanoporous electrodes in catalytic and sensor applications.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03956","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
When a potential is applied to an electrode immersed in an electrolyte solution, ions with opposite charges accumulate around the electrode, forming an electrical double layer (EDL). Unlike flat electrodes, nanoporous electrodes with pore sizes comparable to the EDL thickness experience overlapping EDLs, altering the electrochemically effective surface area. Although previous research has primarily examined the ion charging dynamics and EDL formation in nanoporous electrodes, the impact of EDL overlap on Faraday reactions remains underexplored. In this study, we examined the influence of EDL overlap on electrochemical reactions within nanoporous electrodes using chronoamperometry and DC and AC voltammetry. We used the electrolyte concentration, measurement duration, overpotential, and electrode material as variables to determine the relationship between the extent of EDL overlap and the electrochemical reaction. The electrolyte concentration-dependent electrochemical reaction due to the EDL overlap was more pronounced for electrodes with faster potential changes, shorter measurement times, lower overpotentials, and slower catalytic activity. This is a unique nanoporous electrochemical phenomenon that is not observed on flat electrodes. These findings provide insight into the utilization of nanoporous electrodes in catalytic and sensor applications.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.