Enhancing zero-shot relation extraction with a dual contrastive learning framework and a cross-attention module

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Diyou Li, Lijuan Zhang, Jie Huang, Neal Xiong, Lei Zhang, Jian Wan
{"title":"Enhancing zero-shot relation extraction with a dual contrastive learning framework and a cross-attention module","authors":"Diyou Li, Lijuan Zhang, Jie Huang, Neal Xiong, Lei Zhang, Jian Wan","doi":"10.1007/s40747-024-01642-6","DOIUrl":null,"url":null,"abstract":"<p>Zero-shot relation extraction (ZSRE) is essential for improving the understanding of natural language relations and enhancing the accuracy and efficiency of natural language processing methods in practical applications. However, the existing ZSRE models ignore the importance of semantic information fusion and possess limitations when used for zero-shot relation extraction tasks. Thus, this paper proposes a dual contrastive learning framework and a cross-attention network module for ZSRE. First, our model designs a dual contrastive learning framework to compare the input sentences and relation descriptions from different perspectives; this process aims to achieve better separation between different relation categories in the representation space. Moreover, the cross-attention network of our model is introduced from the computer vision field to enhance the attention paid by the input instance to the relevant information of the relation description. The experimental results obtained on the Wiki-ZSL and FewRel datasets fully demonstrate the effectiveness of our approach.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"11 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01642-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Zero-shot relation extraction (ZSRE) is essential for improving the understanding of natural language relations and enhancing the accuracy and efficiency of natural language processing methods in practical applications. However, the existing ZSRE models ignore the importance of semantic information fusion and possess limitations when used for zero-shot relation extraction tasks. Thus, this paper proposes a dual contrastive learning framework and a cross-attention network module for ZSRE. First, our model designs a dual contrastive learning framework to compare the input sentences and relation descriptions from different perspectives; this process aims to achieve better separation between different relation categories in the representation space. Moreover, the cross-attention network of our model is introduced from the computer vision field to enhance the attention paid by the input instance to the relevant information of the relation description. The experimental results obtained on the Wiki-ZSL and FewRel datasets fully demonstrate the effectiveness of our approach.

利用双重对比学习框架和交叉注意模块加强零镜头关系提取
在实际应用中,零镜头关系提取(ZSRE)对于改善对自然语言关系的理解、提高自然语言处理方法的准确性和效率至关重要。然而,现有的零镜头关系提取模型忽视了语义信息融合的重要性,在用于零镜头关系提取任务时存在局限性。因此,本文为 ZSRE 提出了一个双对比学习框架和一个交叉注意网络模块。首先,我们的模型设计了一个双对比学习框架,从不同角度对输入句子和关系描述进行对比;这一过程旨在更好地分离表征空间中的不同关系类别。此外,我们的模型还从计算机视觉领域引入了交叉注意网络,以增强输入实例对关系描述相关信息的注意。在 Wikii-ZSL 和 FewRel 数据集上获得的实验结果充分证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信