Predicting the body weight of crossbred Holstein × Zebu dairy cows using multivariate adaptive regression splines algorithm.

IF 1.6 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Ignacio Vázquez-Martínez, Cem Tirink, Fernando Casanova-Lugo, Dixan Pozo-Leyva, Daniel Mota-Rojas, Murat Baitugelovich Kalmagambetov, Rashit Uskenov, Ömer Gülboy, Ricardo A Garcia-Herrera, Alfonso J Chay-Canul
{"title":"Predicting the body weight of crossbred Holstein × Zebu dairy cows using multivariate adaptive regression splines algorithm.","authors":"Ignacio Vázquez-Martínez, Cem Tirink, Fernando Casanova-Lugo, Dixan Pozo-Leyva, Daniel Mota-Rojas, Murat Baitugelovich Kalmagambetov, Rashit Uskenov, Ömer Gülboy, Ricardo A Garcia-Herrera, Alfonso J Chay-Canul","doi":"10.1017/S0022029924000578","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to estimate live body weight from body measurements for Holstein × Zebu dairy cows (<i>n</i> = 156) reared under conditions of humid tropics in Mexico using multivariate adaptive regression splines algorithm (MARS) with several train-test proportions. The body measurements included withers height, rump height, hip width, heart girth, body length and diagonal body length. The data were divided into 65:35, 70:30 and 80:20 split data for training and testing sets, respectively. The MARS algorithm was used to construct a prediction model, which predicted the body weight from the body measurements of the test dataset. The results emphasized that the MARS algorithm had an explanation rate for 80:20 train and test set of 0.836 and 0.711, respectively, with minimum Akaike information criterion values. This indicates that it is a reliable way of predicting body weight from body measurements. The results suggest that body weight prediction can be performed with the MARS algorithm in a reliable way, therefore, this algorithm may be a useful tool for animal breeders and researchers in the development of feeding and selection-aimed approaches.</p>","PeriodicalId":15615,"journal":{"name":"Journal of Dairy Research","volume":" ","pages":"1-6"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1017/S0022029924000578","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to estimate live body weight from body measurements for Holstein × Zebu dairy cows (n = 156) reared under conditions of humid tropics in Mexico using multivariate adaptive regression splines algorithm (MARS) with several train-test proportions. The body measurements included withers height, rump height, hip width, heart girth, body length and diagonal body length. The data were divided into 65:35, 70:30 and 80:20 split data for training and testing sets, respectively. The MARS algorithm was used to construct a prediction model, which predicted the body weight from the body measurements of the test dataset. The results emphasized that the MARS algorithm had an explanation rate for 80:20 train and test set of 0.836 and 0.711, respectively, with minimum Akaike information criterion values. This indicates that it is a reliable way of predicting body weight from body measurements. The results suggest that body weight prediction can be performed with the MARS algorithm in a reliable way, therefore, this algorithm may be a useful tool for animal breeders and researchers in the development of feeding and selection-aimed approaches.

利用多元自适应回归样条算法预测荷斯坦×斑马杂交奶牛的体重
本研究旨在利用多变量自适应回归样条算法(MARS)和多个训练-测试比例,通过对墨西哥热带潮湿条件下饲养的荷斯坦×斑马奶牛(n = 156 头)的体测数据估算活体体重。体型测量包括肩高、臀高、臀宽、心宽、体长和对角线体长。数据被分成 65:35、70:30 和 80:20 三份,分别用于训练集和测试集。使用 MARS 算法构建了一个预测模型,通过测试数据集的身体测量值预测体重。结果表明,MARS 算法对 80:20 训练集和测试集的解释率分别为 0.836 和 0.711,且 Akaike 信息准则值最小。这表明,该算法是根据身体测量结果预测体重的可靠方法。结果表明,使用 MARS 算法可以可靠地预测体重,因此,该算法可以成为动物饲养者和研究人员开发饲养和选择目标方法的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Dairy Research
Journal of Dairy Research 农林科学-奶制品与动物科学
CiteScore
3.80
自引率
4.80%
发文量
117
审稿时长
12-24 weeks
期刊介绍: The Journal of Dairy Research is an international Journal of high-standing that publishes original scientific research on all aspects of the biology, wellbeing and technology of lactating animals and the foods they produce. The Journal’s ability to cover the entire dairy foods chain is a major strength. Cross-disciplinary research is particularly welcomed, as is comparative lactation research in different dairy and non-dairy species and research dealing with consumer health aspects of dairy products. Journal of Dairy Research: an international Journal of the lactation sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信