Na Ta, Ke-Ming Zuo, Jing Gao, Na Guan, Li-Tao Song, Yong-Jun Wen, Rui-Ping Yu
{"title":"Origin tracking of Brucella strain B. melitensis bv.3 ARQ-070 using biochemical and genomic studies.","authors":"Na Ta, Ke-Ming Zuo, Jing Gao, Na Guan, Li-Tao Song, Yong-Jun Wen, Rui-Ping Yu","doi":"10.1093/femsle/fnae085","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To conduct an origin tracking and genomic study of the Brucella strain B. melitensis bv.3 ARQ-070, with the aim of addressing the challenges posed by the highly conserved genome of Brucella to conventional typing methods and to gain an understanding of the geographic distribution and interspecies transmission of this pathogen in China.</p><p><strong>Methods: </strong>Differentiation and genotyping were established via biochemical profiles and polymerase chain reaction (AMOS-PCR). Illumina MiSeq® was applied to sequence the Brucella isolates. Using multilocus sequence typing (MLST) multilocus sequence typing and Fisher's exact test was used for the KEGG enrichment analysis of differential genes. Differential gene protein PPI network analysis was conducted using the STRING database and visualisation was performed using.</p><p><strong>Results: </strong>According to the final identification results of an A/M serum agglutination test. ARQ-070 was identified as the No. 3 white spirulina biological variety, and mM was identified as the No. 1 white Spirulina biological variety. The genetic information of this strain is very close to that of the M5 vaccine strain, suggesting possible vaccine-escape infection. In the comparative genomics analysis with B. melitensis bv.1 16 M, the main differences between the B. melitensis strains were found to be concentrated in the genes related to amino acid metabolism and environmental perception. A base mutation was found in the Brucella gene virB9, which is associated with the key virulence factor of the type IV secretion system (T4SS), but this mutation did not lead to changes in the protein's tertiary structure, and the strain did not lose its infectivity.</p><p><strong>Conclusion: </strong>The study discovered a base mutation in the virB9 gene of Brucella, which is linked to T4SS but does not affect the protein's structure or the strain's infectivity. This mutation could influence public health approaches to detecting and preventing Brucella transmission. Future research aims to analyse a wider range of Brucella strains for a deeper understanding of their epidemiology.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae085","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To conduct an origin tracking and genomic study of the Brucella strain B. melitensis bv.3 ARQ-070, with the aim of addressing the challenges posed by the highly conserved genome of Brucella to conventional typing methods and to gain an understanding of the geographic distribution and interspecies transmission of this pathogen in China.
Methods: Differentiation and genotyping were established via biochemical profiles and polymerase chain reaction (AMOS-PCR). Illumina MiSeq® was applied to sequence the Brucella isolates. Using multilocus sequence typing (MLST) multilocus sequence typing and Fisher's exact test was used for the KEGG enrichment analysis of differential genes. Differential gene protein PPI network analysis was conducted using the STRING database and visualisation was performed using.
Results: According to the final identification results of an A/M serum agglutination test. ARQ-070 was identified as the No. 3 white spirulina biological variety, and mM was identified as the No. 1 white Spirulina biological variety. The genetic information of this strain is very close to that of the M5 vaccine strain, suggesting possible vaccine-escape infection. In the comparative genomics analysis with B. melitensis bv.1 16 M, the main differences between the B. melitensis strains were found to be concentrated in the genes related to amino acid metabolism and environmental perception. A base mutation was found in the Brucella gene virB9, which is associated with the key virulence factor of the type IV secretion system (T4SS), but this mutation did not lead to changes in the protein's tertiary structure, and the strain did not lose its infectivity.
Conclusion: The study discovered a base mutation in the virB9 gene of Brucella, which is linked to T4SS but does not affect the protein's structure or the strain's infectivity. This mutation could influence public health approaches to detecting and preventing Brucella transmission. Future research aims to analyse a wider range of Brucella strains for a deeper understanding of their epidemiology.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.