{"title":"Dynamic changes in flavor characteristics of black tea during solid-state fermentation with Eurotium cristatum","authors":"Linyao Song, Fengwei Ma, Haijiang Chen, Qiang Fei, Guangcan Tao, Siyao Wu, Dajuan Shi, Junyi Deng, Degang Zhao, Xuan Dong, Yichen Zhao, Su Xu","doi":"10.1016/j.foodchem.2024.142028","DOIUrl":null,"url":null,"abstract":"This study employed GC–MS, GC-IMS, and sensory evaluation to investigate dynamic changes in flavor during the solid-state fermentation of black tea by <em>Eurotium cristatum</em>. The results revealed a notable decrease in the bitter and astringent tastes of the black tea infusion following fermentation, while the mellow taste increased significantly. A total of 152 and 129 VOCs were detected by GC–MS and GC-IMS, respectively. And 4 key aroma-active compounds were identified by ROAV. These specific VOCs contributed floral, honey, and sweet scents, which were responsible for the fungal floral aroma in the processed black tea. Furthermore, OPLS-DA identified 31 key VOCs that played a crucial role in differentiating various fermentation stages, with day 4 recognized as a pivotal point for aroma development. The solid-state fermentation with <em>Eurotium cristatum</em> resulted in fermented black tea characterized by a mellow taste and a rich fungal floral aroma, enhancing the flavor quality of the tea.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142028","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This study employed GC–MS, GC-IMS, and sensory evaluation to investigate dynamic changes in flavor during the solid-state fermentation of black tea by Eurotium cristatum. The results revealed a notable decrease in the bitter and astringent tastes of the black tea infusion following fermentation, while the mellow taste increased significantly. A total of 152 and 129 VOCs were detected by GC–MS and GC-IMS, respectively. And 4 key aroma-active compounds were identified by ROAV. These specific VOCs contributed floral, honey, and sweet scents, which were responsible for the fungal floral aroma in the processed black tea. Furthermore, OPLS-DA identified 31 key VOCs that played a crucial role in differentiating various fermentation stages, with day 4 recognized as a pivotal point for aroma development. The solid-state fermentation with Eurotium cristatum resulted in fermented black tea characterized by a mellow taste and a rich fungal floral aroma, enhancing the flavor quality of the tea.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture