Jixiu Li;Truman Cheng;Wai Shing Chan;Zixiao Chen;Yehui Li;Calvin Sze Hang Ng;Philip Wai Yan Chiu;Zheng Li
{"title":"A Scorpion-Inspired 5-DOF Miniature Remote Actuation Robotic Endoscope for Minimally Invasive Surgery","authors":"Jixiu Li;Truman Cheng;Wai Shing Chan;Zixiao Chen;Yehui Li;Calvin Sze Hang Ng;Philip Wai Yan Chiu;Zheng Li","doi":"10.1109/TMRB.2024.3464114","DOIUrl":null,"url":null,"abstract":"Remote Actuation Mechanisms (RAMs) play a vital role in minimally invasive surgery (MIS) by providing motion capabilities within limited spaces. This paper first focused on analyzing commonly employed RAMs to understand their strengths and limitations. Then, drawing inspiration from bionics and the biological structure of scorpions, we proposed a novel approach by integrating three RAMs-a magnet pair, a torque coil, and a soft bellow-to create a 5-degree-of-freedom (5-DOF) miniature remote actuation robot. In the design phase, we established the robot’s parameters using the magnetic dipole model and related constraints. A functional prototype of the robot, along with an external controller and user interface, was fabricated and assembled. Experimental investigations demonstrated motion performance across the 5 DOF, validating the robot’s feasibility. To assess the practicality of the system, the interaction interface was evaluated under controlled laboratory conditions and through a cadaver test. In conclusion, our innovative approach combines multiple RAMs into a 5-DOF remote actuation robot. Comprehensive tests validated its motion capabilities and highlighted its potential to advance MIS procedures.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684279/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Remote Actuation Mechanisms (RAMs) play a vital role in minimally invasive surgery (MIS) by providing motion capabilities within limited spaces. This paper first focused on analyzing commonly employed RAMs to understand their strengths and limitations. Then, drawing inspiration from bionics and the biological structure of scorpions, we proposed a novel approach by integrating three RAMs-a magnet pair, a torque coil, and a soft bellow-to create a 5-degree-of-freedom (5-DOF) miniature remote actuation robot. In the design phase, we established the robot’s parameters using the magnetic dipole model and related constraints. A functional prototype of the robot, along with an external controller and user interface, was fabricated and assembled. Experimental investigations demonstrated motion performance across the 5 DOF, validating the robot’s feasibility. To assess the practicality of the system, the interaction interface was evaluated under controlled laboratory conditions and through a cadaver test. In conclusion, our innovative approach combines multiple RAMs into a 5-DOF remote actuation robot. Comprehensive tests validated its motion capabilities and highlighted its potential to advance MIS procedures.