Telemanipulated Vascular Intervention System for Minimally Invasive Surgery

IF 3.4 Q2 ENGINEERING, BIOMEDICAL
Siyi Wei;Zhiwei Wu;Jinhui Zhang;Shaomeng Gu;Zhanxin Geng;Jiahao Luo;Yueyang Gao;Zheng Li
{"title":"Telemanipulated Vascular Intervention System for Minimally Invasive Surgery","authors":"Siyi Wei;Zhiwei Wu;Jinhui Zhang;Shaomeng Gu;Zhanxin Geng;Jiahao Luo;Yueyang Gao;Zheng Li","doi":"10.1109/TMRB.2024.3473299","DOIUrl":null,"url":null,"abstract":"Minimally invasive surgery, as a promising treatment method for coronary heart disease and intracranial aneurysm, has received extensive research interest due to its appealing characteristics, e.g., the little surgical trauma, short rehabilitation time, determined curative effect, and less pain. However, the accumulated X-ray radiation during the percutaneous coronary intervention (PCI) and neurovascular intervention (NVI) greatly increases the probability of medical staff suffering from cataracts and brain tumors. In this article, the telemanipulated vascular intervention (TVI) system is presented, a compact and versatile vascular interventional system. The TVI system comprised of a leader joystick, a follower delivery device, and a graphical user interface is designed for intravascular delivery during the robot-assisted PCI and robot-assisted NVI. The performance of the TVI system is evaluated by demonstrating its ability to achieve telemanipulated navigation in the real-sized 3D cardio-cerebrovascular model with coronary stenosis and intracranial aneurysms. The experimental results demonstrate that the TVI system can navigate to 3 types of coronary stenosis, 6 types of cerebral artery, and an intracranial aneurysm with a diameter of 8 mm. To further demonstrate the performance of the TVI system, the robot-assisted renal artery angioplasty is conducted in a rabbit model for preclinical evaluation. These promising results indicate that the TVI system is capable of precisely manipulating the guidewire remotely, mitigating the health risks associated with prolonged exposure to X-ray radiation for interventionists.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704730/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Minimally invasive surgery, as a promising treatment method for coronary heart disease and intracranial aneurysm, has received extensive research interest due to its appealing characteristics, e.g., the little surgical trauma, short rehabilitation time, determined curative effect, and less pain. However, the accumulated X-ray radiation during the percutaneous coronary intervention (PCI) and neurovascular intervention (NVI) greatly increases the probability of medical staff suffering from cataracts and brain tumors. In this article, the telemanipulated vascular intervention (TVI) system is presented, a compact and versatile vascular interventional system. The TVI system comprised of a leader joystick, a follower delivery device, and a graphical user interface is designed for intravascular delivery during the robot-assisted PCI and robot-assisted NVI. The performance of the TVI system is evaluated by demonstrating its ability to achieve telemanipulated navigation in the real-sized 3D cardio-cerebrovascular model with coronary stenosis and intracranial aneurysms. The experimental results demonstrate that the TVI system can navigate to 3 types of coronary stenosis, 6 types of cerebral artery, and an intracranial aneurysm with a diameter of 8 mm. To further demonstrate the performance of the TVI system, the robot-assisted renal artery angioplasty is conducted in a rabbit model for preclinical evaluation. These promising results indicate that the TVI system is capable of precisely manipulating the guidewire remotely, mitigating the health risks associated with prolonged exposure to X-ray radiation for interventionists.
用于微创手术的遥控血管介入系统
微创手术作为治疗冠心病和颅内动脉瘤的一种有前途的方法,因其手术创伤小、康复时间短、疗效确切、痛苦少等吸引人的特点而受到广泛的研究关注。然而,经皮冠状动脉介入治疗(PCI)和神经血管介入治疗(NVI)过程中累积的 X 射线辐射大大增加了医务人员患白内障和脑肿瘤的概率。本文介绍的远程操控血管介入(TVI)系统是一种结构紧凑、功能多样的血管介入系统。TVI 系统由一个引导操纵杆、一个从动输送装置和一个图形用户界面组成,设计用于机器人辅助 PCI 和机器人辅助 NVI 期间的血管内输送。通过在具有冠状动脉狭窄和颅内动脉瘤的真实大小的三维心脑血管模型中演示其实现远程操控导航的能力,对 TVI 系统的性能进行了评估。实验结果表明,TVI 系统可以导航 3 种类型的冠状动脉狭窄、6 种类型的脑动脉和直径为 8 毫米的颅内动脉瘤。为了进一步证明 TVI 系统的性能,还在兔子模型中进行了机器人辅助肾动脉血管成形术的临床前评估。这些令人鼓舞的结果表明,TVI 系统能够远程精确操纵导丝,从而降低介入医师因长时间暴露于 X 射线辐射而带来的健康风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信