AlGaN/GaN High Electron Mobility Transistor Amplifier for High-Temperature Operation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Pingyu Cao;Kepeng Zhao;Harm Van Zalinge;Ping Zhang;Miao Cui;Fei Xue
{"title":"AlGaN/GaN High Electron Mobility Transistor Amplifier for High-Temperature Operation","authors":"Pingyu Cao;Kepeng Zhao;Harm Van Zalinge;Ping Zhang;Miao Cui;Fei Xue","doi":"10.1109/JEDS.2024.3486454","DOIUrl":null,"url":null,"abstract":"This paper presents a high gain voltage amplifier based on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with monolithically integrated enhancement-mode (E-mode) and depletion-mode (D-mode) devices. The GaN amplifier consists of differential pair based on E-mode devices, active loads based on D-mode devices and a current source, and the influence of the current source on voltage gain was evaluated. The proposed amplifier demonstrates a high gain and high unity-gain frequency at both room temperature (25 °C) and high-temperature (250 °C). The gain is 37.4 dB at room temperature, slightly decreasing to 32.7 dB when the temperature rises to 250 °C. Moreover, the power consumption reported in this work is decreased to 60 mW by reducing the static current, and the chip area of this work is reduced to \n<inline-formula> <tex-math>$2.806{\\times 10^{5}\\mu {\\mathrm { m^{2}}}}$ </tex-math></inline-formula>\n. These results indicate that the proposed amplifier is suitable for small signal sensing or driving circuits, which would promise high power density for GaN-on-Si integration circuits with high-temperature operation.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737042/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a high gain voltage amplifier based on AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs) with monolithically integrated enhancement-mode (E-mode) and depletion-mode (D-mode) devices. The GaN amplifier consists of differential pair based on E-mode devices, active loads based on D-mode devices and a current source, and the influence of the current source on voltage gain was evaluated. The proposed amplifier demonstrates a high gain and high unity-gain frequency at both room temperature (25 °C) and high-temperature (250 °C). The gain is 37.4 dB at room temperature, slightly decreasing to 32.7 dB when the temperature rises to 250 °C. Moreover, the power consumption reported in this work is decreased to 60 mW by reducing the static current, and the chip area of this work is reduced to $2.806{\times 10^{5}\mu {\mathrm { m^{2}}}}$ . These results indicate that the proposed amplifier is suitable for small signal sensing or driving circuits, which would promise high power density for GaN-on-Si integration circuits with high-temperature operation.
用于高温运行的氮化铝/氮化镓高电子迁移率晶体管放大器
本文介绍了一种基于氮化镓/氮化镓金属绝缘体-半导体高电子迁移率晶体管(MIS-HEMT)的高增益电压放大器,该放大器具有单片集成的增强型(E 模)和耗尽型(D 模)器件。GaN 放大器由基于 E 模式器件的差分对、基于 D 模式器件的有源负载和电流源组成,并评估了电流源对电压增益的影响。所提出的放大器在室温(25 °C)和高温(250 °C)条件下均表现出较高的增益和较高的单位增益频率。室温下的增益为 37.4 dB,当温度升至 250 °C 时,增益略降至 32.7 dB。此外,通过减小静态电流,本作品中报告的功耗降低到 60 mW,芯片面积减小到 2.806{\times 10^{5}\mu {\mathrm { m^{2}}}}$ 。这些结果表明,所提出的放大器适用于小信号传感或驱动电路,有望为高温工作的硅基氮化镓集成电路带来高功率密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信