Wenjing Qiao, Jiantuo Zhao, Yingwei Qi, Xiaopei Zhu, Xifei Wang, Zhizhi Xu, Mei Bai, Junwen Mei, Yanhua Hu and Xiaojie Lou
{"title":"Ultra-low thermal conductivity and enhanced mechanical properties of high-entropy perovskite ceramics†","authors":"Wenjing Qiao, Jiantuo Zhao, Yingwei Qi, Xiaopei Zhu, Xifei Wang, Zhizhi Xu, Mei Bai, Junwen Mei, Yanhua Hu and Xiaojie Lou","doi":"10.1039/D4TC03278K","DOIUrl":null,"url":null,"abstract":"<p >At present, the research on high-entropy perovskite materials mainly focuses on electrical properties. When they are employed in high-temperature and high-pressure environments, the stability of their working performance is extremely important, but the research on them is very limited. A novel entropy-stabilized ceramic system, denoted as Ba(Zr<small><sub>0.2</sub></small>Ti<small><sub>0.2</sub></small>Sn<small><sub>0.2</sub></small>Hf<small><sub>0.2</sub></small>X<small><sub>0.2</sub></small>)O<small><sub>3</sub></small> (X = Nb<small><sup>5+</sup></small>, Ta<small><sup>5+</sup></small>), featuring a disordered perovskite structure, was synthesized. The high entropy ceramic, Ba(Zr<small><sub>0.2</sub></small>Ti<small><sub>0.2</sub></small>Sn<small><sub>0.2</sub></small>Hf<small><sub>0.2</sub></small>Ta<small><sub>0.2</sub></small>)O<small><sub>3</sub></small> (abbreviated as HEC-Ta), manifests a thermal expansion coefficient (9.00 × 10<small><sup>−6</sup></small> K<small><sup>−1</sup></small> at 1400 °C). It exhibits exceptional thermal stability within the range of 30 to 1400 °C, coupled with low thermal conductivity (1.97 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> at 1200 °C) and superior mechanical properties (<em>H</em><small><sub>v</sub></small> = 10.96 GPa, <em>E</em> = 178.28 GPa). These properties are ascribed to a high degree of lattice distortion arising from the stochastic distribution of different cations, along with the high entropy cocktail effect, leading to increased phonon scattering. This study thus presents a novel approach to develop a ceramic material devoid of rare earth elements, and can be enlightened for the application of perovskite materials in high temperature environments.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03278k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At present, the research on high-entropy perovskite materials mainly focuses on electrical properties. When they are employed in high-temperature and high-pressure environments, the stability of their working performance is extremely important, but the research on them is very limited. A novel entropy-stabilized ceramic system, denoted as Ba(Zr0.2Ti0.2Sn0.2Hf0.2X0.2)O3 (X = Nb5+, Ta5+), featuring a disordered perovskite structure, was synthesized. The high entropy ceramic, Ba(Zr0.2Ti0.2Sn0.2Hf0.2Ta0.2)O3 (abbreviated as HEC-Ta), manifests a thermal expansion coefficient (9.00 × 10−6 K−1 at 1400 °C). It exhibits exceptional thermal stability within the range of 30 to 1400 °C, coupled with low thermal conductivity (1.97 W m−1 K−1 at 1200 °C) and superior mechanical properties (Hv = 10.96 GPa, E = 178.28 GPa). These properties are ascribed to a high degree of lattice distortion arising from the stochastic distribution of different cations, along with the high entropy cocktail effect, leading to increased phonon scattering. This study thus presents a novel approach to develop a ceramic material devoid of rare earth elements, and can be enlightened for the application of perovskite materials in high temperature environments.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.