Jian-Sian Li, Chiao-Ching Chiang, Hsiao-Hsuan Wan, Madani Labed, Jang Hyeok Park, You Seung Rim, Meng-Hsun Yu, Fan Ren, Yu-Te Liao and Stephen J. Pearton
{"title":"Hybrid Schottky and heterojunction vertical β-Ga2O3 rectifiers†","authors":"Jian-Sian Li, Chiao-Ching Chiang, Hsiao-Hsuan Wan, Madani Labed, Jang Hyeok Park, You Seung Rim, Meng-Hsun Yu, Fan Ren, Yu-Te Liao and Stephen J. Pearton","doi":"10.1039/D4TC03046J","DOIUrl":null,"url":null,"abstract":"<p >Junction barrier Schottky design Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> rectifiers allow for a combination of low turn-on voltage and high breakdown voltage. Ni/Au/Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> Schottky rectifiers and NiO/Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> heterojunction rectifiers were fabricated on the same wafer and the percentage of the relative areas and diameters of each were varied from pure Schottky devices to pure heterojunction devices. The on-voltage increased from 0.6 V for Schottky rectifiers to 2.4 V for heterojunction rectifiers, with a monotonic decrease in forward current at fixed bias of 5 V from 375 nA cm<small><sup>−2</sup></small> to 175 nA cm<small><sup>−2</sup></small>. Conversely, the breakdown voltage increased monotonically as the proportion of heterojunction area increased, from 1.2 kV for Schottky rectifiers to 6.2 kV for pure heterojunction devices. Breakdown mostly was initiated at the edge of the anode contact but could also occur at the transition region from the Schottky contact to NiO edge termination. The Baliga figure of merit increased with both the relative percentage of area and diameter of the heterojunction contact from 0.2 GW cm<small><sup>−2</sup></small> to 3 GW cm<small><sup>−2</sup></small>, while the energy loss during switching also increased from 2 to 3.9 W cm<small><sup>−2</sup></small>. These trends illustrate the trade-offs of Schottky <em>versus</em> pn junctions for the operation of Ga<small><sub>2</sub></small>O<small><sub>3</sub></small> rectifiers.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03046j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Junction barrier Schottky design Ga2O3 rectifiers allow for a combination of low turn-on voltage and high breakdown voltage. Ni/Au/Ga2O3 Schottky rectifiers and NiO/Ga2O3 heterojunction rectifiers were fabricated on the same wafer and the percentage of the relative areas and diameters of each were varied from pure Schottky devices to pure heterojunction devices. The on-voltage increased from 0.6 V for Schottky rectifiers to 2.4 V for heterojunction rectifiers, with a monotonic decrease in forward current at fixed bias of 5 V from 375 nA cm−2 to 175 nA cm−2. Conversely, the breakdown voltage increased monotonically as the proportion of heterojunction area increased, from 1.2 kV for Schottky rectifiers to 6.2 kV for pure heterojunction devices. Breakdown mostly was initiated at the edge of the anode contact but could also occur at the transition region from the Schottky contact to NiO edge termination. The Baliga figure of merit increased with both the relative percentage of area and diameter of the heterojunction contact from 0.2 GW cm−2 to 3 GW cm−2, while the energy loss during switching also increased from 2 to 3.9 W cm−2. These trends illustrate the trade-offs of Schottky versus pn junctions for the operation of Ga2O3 rectifiers.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.