Ecological roles of nano-picoplankton in stratified waters of an embayment in the southern Benguela.

IF 2.2 4区 生物学 Q3 MICROBIOLOGY
Nicole R Dames, Emma Rocke, Grant Pitcher, Edward Rybicki, Maya Pfaff, Coleen L Moloney
{"title":"Ecological roles of nano-picoplankton in stratified waters of an embayment in the southern Benguela.","authors":"Nicole R Dames, Emma Rocke, Grant Pitcher, Edward Rybicki, Maya Pfaff, Coleen L Moloney","doi":"10.1093/femsle/fnae094","DOIUrl":null,"url":null,"abstract":"<p><p>Nano-picoplankton are the dominant primary producers during the post-upwelling period in St Helena Bay, South Africa. Their dynamics on short time scales are not well understood and neither are the community composition, structure, and potential functionality of the surrounding microbiome. Samples were collected over five consecutive days in March 2018 from three depths (1 m, 25 m, 50 m) at a single sampling station in St Helena Bay. There was clear depth-differentiation between the surface and depth in both diversity and function throughout the sampling period for the archaea, bacteria and eukaryotes. Daily difference in eukaryote diversity, was more pronounced at 1 m and 25 m with increased abundances of Syndiniales and Bacillariophyta. Surface waters were dominated by photosynthetic and photoheterotrophic microorganisms, while samples at depth were linked to nitrogen cycling processes, with high abundances of nitrifiers and denitrifiers. Strong depth gradients found in the nutrient transporters for ammonia were good indicators of measured uptake rates. This study showed that nano-picoplankton dynamics were driven by light availability, nutrient concentrations, carbon biomass and oxygenation. The nano-picoplankton help sustain ecosystem functioning in St Helena Bay through their ecological roles, which emphasizes the need to monitor this size fraction of the plankton.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae094","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nano-picoplankton are the dominant primary producers during the post-upwelling period in St Helena Bay, South Africa. Their dynamics on short time scales are not well understood and neither are the community composition, structure, and potential functionality of the surrounding microbiome. Samples were collected over five consecutive days in March 2018 from three depths (1 m, 25 m, 50 m) at a single sampling station in St Helena Bay. There was clear depth-differentiation between the surface and depth in both diversity and function throughout the sampling period for the archaea, bacteria and eukaryotes. Daily difference in eukaryote diversity, was more pronounced at 1 m and 25 m with increased abundances of Syndiniales and Bacillariophyta. Surface waters were dominated by photosynthetic and photoheterotrophic microorganisms, while samples at depth were linked to nitrogen cycling processes, with high abundances of nitrifiers and denitrifiers. Strong depth gradients found in the nutrient transporters for ammonia were good indicators of measured uptake rates. This study showed that nano-picoplankton dynamics were driven by light availability, nutrient concentrations, carbon biomass and oxygenation. The nano-picoplankton help sustain ecosystem functioning in St Helena Bay through their ecological roles, which emphasizes the need to monitor this size fraction of the plankton.

本格拉南部海湾分层水域纳米浮游生物的生态作用。
纳米浮游微粒是南非圣赫勒拿湾后上升流时期的主要初级生产者。人们对它们在短时间内的动态还不甚了解,对周围微生物群的群落组成、结构和潜在功能也不甚了解。2018 年 3 月,在圣赫勒拿湾的一个采样站连续五天从三个深度(1 米、25 米、50 米)采集了样本。在整个采样期间,古细菌、细菌和真核生物的多样性和功能在表层和深层之间存在明显的深度差异。真核生物多样性的日差异在 1 米和 25 米处更为明显,鞘氨醇类和芽孢杆菌的丰度增加。表层水域主要是光合和光合异养微生物,而深层水域的样本则与氮循环过程有关,硝化细菌和反硝化细菌的数量较多。在氨的养分转运体中发现的强烈深度梯度是测量吸收率的良好指标。这项研究表明,纳米浮游生物的动态受光照、营养物质浓度、碳生物量和含氧量的驱动。纳米微小浮游生物通过其生态作用帮助维持圣赫勒拿岛湾的生态系统功能,这强调了对这部分浮游生物进行监测的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fems Microbiology Letters
Fems Microbiology Letters 生物-微生物学
CiteScore
4.30
自引率
0.00%
发文量
112
审稿时长
1.9 months
期刊介绍: FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered. 2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020) Ranking: 98/135 (Microbiology) The journal is divided into eight Sections: Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies) Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens) Biotechnology and Synthetic Biology Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses) Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies) Virology (viruses infecting any organism, including Bacteria and Archaea) Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature) Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology) If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信