Modeling of HCI effect in nFinFET for circuit reliability simulation

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Jun-an Zhang, Bo Liu, Hao Chen, Chao Li, Dan Li, Tiehu Li, Yunhua Lu, Qingwei Zhang
{"title":"Modeling of HCI effect in nFinFET for circuit reliability simulation","authors":"Jun-an Zhang,&nbsp;Bo Liu,&nbsp;Hao Chen,&nbsp;Chao Li,&nbsp;Dan Li,&nbsp;Tiehu Li,&nbsp;Yunhua Lu,&nbsp;Qingwei Zhang","doi":"10.1016/j.microrel.2024.115543","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes an equivalent circuit model for simulating the Hot Carrier Injection (HCI) effect. This model is developed based on the N-FinFET in the 12 nm Process Design Kit (PDK) and incorporates arithmetic units and electrical components from the Electronic Design Automatic (EDA) software. Input parameters can be freely modified by the user, such as stress time, ambient temperature, gate length, gate width and process corner. The model also considers the influence of the voltage at each end of the transistor on the HCI effect. The model can be accessed in the EDA tool just like a normal transistor and can be used to evaluate the HCI effect on circuits without modifying the SPICE model. The accuracy and applicability of this model has been verified by comparing it with measured results from other published literature.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"163 ","pages":"Article 115543"},"PeriodicalIF":1.6000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424002233","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an equivalent circuit model for simulating the Hot Carrier Injection (HCI) effect. This model is developed based on the N-FinFET in the 12 nm Process Design Kit (PDK) and incorporates arithmetic units and electrical components from the Electronic Design Automatic (EDA) software. Input parameters can be freely modified by the user, such as stress time, ambient temperature, gate length, gate width and process corner. The model also considers the influence of the voltage at each end of the transistor on the HCI effect. The model can be accessed in the EDA tool just like a normal transistor and can be used to evaluate the HCI effect on circuits without modifying the SPICE model. The accuracy and applicability of this model has been verified by comparing it with measured results from other published literature.
用于电路可靠性模拟的 nFinFET 中 HCI 效应建模
本文提出了一种模拟热载流子注入 (HCI) 效应的等效电路模型。该模型基于 12 纳米工艺设计套件 (PDK) 中的 N-FinFET 开发,并结合了电子设计自动化 (EDA) 软件中的运算单元和电气元件。输入参数可由用户自由修改,如应力时间、环境温度、栅极长度、栅极宽度和工艺转角。该模型还考虑了晶体管两端的电压对 HCI 效应的影响。在 EDA 工具中可以像访问普通晶体管一样访问该模型,并可用于评估电路的 HCI 效应,而无需修改 SPICE 模型。该模型的准确性和适用性已通过与其他已发表文献中的测量结果进行比较得到验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信