{"title":"Employing the cluster of node cut sets to improve the robustness of the network measured by connectivity","authors":"Wei Wei, Guobin Sun, Peng Li, Qinghui Zhang","doi":"10.1016/j.ress.2024.110612","DOIUrl":null,"url":null,"abstract":"<div><div>Protection of critical nodes or edges can help defend networks from failures caused by natural disasters or intended attacks. Node protection becomes the only way when edge protection is not possible, where node connectivity is usually used to measure network robustness due to its effectiveness. Although simple, node connectivity-oriented node consolidation optimization is still NP-hard, especially when dealing with large numbers of nodes. To address the problem, by leveraging the mapping between nodes and traversal trees, per-node cluster of node cut sets is used to identify nominee nodes, which are then conditionally consolidated through a extended dual tree-based selection process. Experimental results show that in small graphs with tens of nodes where the optimal algorithm is applicable, an acceleration ratio of more than <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> (at most <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>) is observed at the expense of about 6% extra cost. In large graphs with millions of nodes, the proposed algorithm can help promote node connectivity of more than 99.9% of node pairs, which is far better than commonly used heuristics. Its inherent ready-for-paralleling capability paves the way for more speedups.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"254 ","pages":"Article 110612"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832024006835","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Protection of critical nodes or edges can help defend networks from failures caused by natural disasters or intended attacks. Node protection becomes the only way when edge protection is not possible, where node connectivity is usually used to measure network robustness due to its effectiveness. Although simple, node connectivity-oriented node consolidation optimization is still NP-hard, especially when dealing with large numbers of nodes. To address the problem, by leveraging the mapping between nodes and traversal trees, per-node cluster of node cut sets is used to identify nominee nodes, which are then conditionally consolidated through a extended dual tree-based selection process. Experimental results show that in small graphs with tens of nodes where the optimal algorithm is applicable, an acceleration ratio of more than (at most ) is observed at the expense of about 6% extra cost. In large graphs with millions of nodes, the proposed algorithm can help promote node connectivity of more than 99.9% of node pairs, which is far better than commonly used heuristics. Its inherent ready-for-paralleling capability paves the way for more speedups.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.