Benjamin Delbos, Remi Chalard, Arnaud Leleve, Richard Moreau
{"title":"A Generalized Tracking Wall Approach to the Haptic Simulation of Tip Forces During Needle Insertion.","authors":"Benjamin Delbos, Remi Chalard, Arnaud Leleve, Richard Moreau","doi":"10.1109/TOH.2024.3487000","DOIUrl":null,"url":null,"abstract":"<p><p>Haptic simulation of needle insertion requires both a needle-tissue interaction model and a method to render the outputs of this model into real-time force feedback for the user. In comparison with interaction models, rendering methods in the literature have seen little development and are either oversimplified or too computationally complex. Therefore, this study introduces the Generalized Tracking Wall (GTW) approach, a haptic rendering method inspired by the proxy approach. It aims to accurately simulate the interaction between a needle tip and soft tissues without the complex calculations of tissue deformations. The essence of the proposed method is that it associates an algorithm based on the energetic analysis of cutting with a contact model capable of simulating viscoelasticity and nonlinearity. This association proved to be a potent tool to faithfully replicate the different phases of needle insertion while adhering to underlying physics. Multi-layered-tissue insertions are also considered. The performance and generecity of the GTW are first evaluated through simulations. Then, the GTW is experimentally compared to empirical methods inspired by the literature.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":"PP ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2024.3487000","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
Haptic simulation of needle insertion requires both a needle-tissue interaction model and a method to render the outputs of this model into real-time force feedback for the user. In comparison with interaction models, rendering methods in the literature have seen little development and are either oversimplified or too computationally complex. Therefore, this study introduces the Generalized Tracking Wall (GTW) approach, a haptic rendering method inspired by the proxy approach. It aims to accurately simulate the interaction between a needle tip and soft tissues without the complex calculations of tissue deformations. The essence of the proposed method is that it associates an algorithm based on the energetic analysis of cutting with a contact model capable of simulating viscoelasticity and nonlinearity. This association proved to be a potent tool to faithfully replicate the different phases of needle insertion while adhering to underlying physics. Multi-layered-tissue insertions are also considered. The performance and generecity of the GTW are first evaluated through simulations. Then, the GTW is experimentally compared to empirical methods inspired by the literature.
期刊介绍:
IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.