Experimental Validation of a Notch-Beam and Frequency-Scanning Sub-THz Radar

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad-Reza Seidi;Armin Karimi;Alireza Madannejad;Umer Shah;Joachim Oberhammer
{"title":"Experimental Validation of a Notch-Beam and Frequency-Scanning Sub-THz Radar","authors":"Mohammad-Reza Seidi;Armin Karimi;Alireza Madannejad;Umer Shah;Joachim Oberhammer","doi":"10.1109/TTHZ.2024.3471929","DOIUrl":null,"url":null,"abstract":"This article experimentally demonstrates a frequency-sweeping notch-beam sub-THz radar frontend based on a two-line array antenna featuring computational imaging. Operating within 237.5 GHz and 250 GHz with 12.5 GHz bandwidth, the radar utilizes a 12\n<inline-formula><tex-math>$\\lambda _{c}$</tex-math></inline-formula>\n delay line to achieve frequency-sweeping capabilities. This configuration allows dynamic notch-beam scanning across angular ranges from \n<inline-formula><tex-math>$-$</tex-math></inline-formula>\n26.5\n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\n to 28\n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\n. The radar frontend is highly compact with a total size of 20 mm× 14.3 mm× 1.2 mm, including the beam-steering network, a magic-tee for creating the 180\n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\n phase shift required for creating the notch-beam, and the antenna array, and is implemented by silicon micromachining. The radar was evaluated with single and dual-target scenarios utilizing and benchmarking different computational imaging algorithms, i.e., matched filter (MF), fast iterative shrinkage-thresholding algorithm (FISTA), and multiple signal classification (MUSIC). It was found that the MUSIC algorithm outperforms MF and FISTA in range and angular resolution in single-target scenes, achieving a range resolution of 7.8 mm and an angular resolution of 15.7\n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\n, with detection errors of less than 6.6 mm and 3.5\n<inline-formula><tex-math>$^\\circ$</tex-math></inline-formula>\n, respectively. Although the MUSIC algorithm maintains reliable range resolution in dual-target scenarios, it performs poorly in providing angular information.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"865-873"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700982","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10700982/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article experimentally demonstrates a frequency-sweeping notch-beam sub-THz radar frontend based on a two-line array antenna featuring computational imaging. Operating within 237.5 GHz and 250 GHz with 12.5 GHz bandwidth, the radar utilizes a 12 $\lambda _{c}$ delay line to achieve frequency-sweeping capabilities. This configuration allows dynamic notch-beam scanning across angular ranges from $-$ 26.5 $^\circ$ to 28 $^\circ$ . The radar frontend is highly compact with a total size of 20 mm× 14.3 mm× 1.2 mm, including the beam-steering network, a magic-tee for creating the 180 $^\circ$ phase shift required for creating the notch-beam, and the antenna array, and is implemented by silicon micromachining. The radar was evaluated with single and dual-target scenarios utilizing and benchmarking different computational imaging algorithms, i.e., matched filter (MF), fast iterative shrinkage-thresholding algorithm (FISTA), and multiple signal classification (MUSIC). It was found that the MUSIC algorithm outperforms MF and FISTA in range and angular resolution in single-target scenes, achieving a range resolution of 7.8 mm and an angular resolution of 15.7 $^\circ$ , with detection errors of less than 6.6 mm and 3.5 $^\circ$ , respectively. Although the MUSIC algorithm maintains reliable range resolution in dual-target scenarios, it performs poorly in providing angular information.
槽口波束和频率扫描次 THz 雷达的实验验证
本文通过实验展示了一种基于双线阵列天线的具有计算成像功能的频率扫描陷波束 sub-THz 雷达前端。该雷达在 237.5 GHz 和 250 GHz 范围内工作,带宽为 12.5 GHz,利用 12$\lambda _{c}$ 延迟线实现扫频功能。这种配置允许在从 $-$26.5$^\circ$ 到 28$^\circ$ 的角度范围内进行动态陷波束扫描。雷达前端结构非常紧凑,总尺寸为 20 mm×14.3 mm×1.2 mm,包括波束转向网络、用于产生陷波束所需的 180$^circ$ 相移的魔术贴和天线阵列,并通过硅微机械加工实现。利用不同的计算成像算法,即匹配滤波器(MF)、快速迭代收缩阈值算法(FISTA)和多信号分类(MUSIC),对雷达的单目标和双目标情况进行了评估和基准测试。研究发现,在单目标场景中,MUSIC 算法的测距分辨率和角度分辨率均优于 MF 和 FISTA,测距分辨率达到 7.8 mm,角度分辨率达到 15.7$^\circ$,检测误差分别小于 6.6 mm 和 3.5$^\circ$。虽然 MUSIC 算法在双目标场景中保持了可靠的距离分辨率,但在提供角度信息方面表现不佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信