MEMS Phase Shifters for THz Beam-Scanning: Demonstration With a 500–600 GHz Phased Array With Leaky-Wave Feeds

IF 3.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Sven van Berkel;Subash Khanal;Sofia Rahiminejad;Cecile Jung-Kubiak;Alain Eric Maestrini;Goutam Chattopadhyay
{"title":"MEMS Phase Shifters for THz Beam-Scanning: Demonstration With a 500–600 GHz Phased Array With Leaky-Wave Feeds","authors":"Sven van Berkel;Subash Khanal;Sofia Rahiminejad;Cecile Jung-Kubiak;Alain Eric Maestrini;Goutam Chattopadhyay","doi":"10.1109/TTHZ.2024.3471898","DOIUrl":null,"url":null,"abstract":"Beam-scanning capabilities for space-borne submillimeter-wave spectrometers are critical for instrument calibration and field-of-view mapping. However, the lack of low-loss waveguide-integrated phase shifters above 500 GHz has been a significant challenge for realizing Terahertz phased array antennas. Recently developed microelectromechanical system (MEMS)-actuated phase shifters have emerged as promising candidates, initially demonstrating a 145\n<inline-formula><tex-math>${}^\\circ$</tex-math></inline-formula>\n phase shift. As a first demonstration of the efficacy of these phase shifters for electronic beam-steering, we present the design, fabrication, and characterization of a linear, near-Nyquist sampled, 4 × 1-element phased array operating from 500 to 600 GHz. The array element is a silicon micromachined leaky-wave feed based on a Fabry–Pérot cavity to enhance directivity and reduce grating lobes while achieving bandwidth requirements with minimal scan loss. It is shown, through measurements, that this antenna feed is suitable for use in larger 8 × 1-element arrays for applications that require moderate gain (20 dBi) and scanning (\n<inline-formula><tex-math>$\\pm 20^\\circ$</tex-math></inline-formula>\n) with a fan beam. Furthermore, we present measurement results of a second generation of MEMS phase shifters with an increased measured phase shift up to 350\n<inline-formula><tex-math>${}^\\circ$</tex-math></inline-formula>\n. A full 360\n<inline-formula><tex-math>${}^\\circ$</tex-math></inline-formula>\n phase-wrapping capability is desired as this will enable high-gain lens-scanning phased arrays that can be used for future submillimeter-wave spectrometers.","PeriodicalId":13258,"journal":{"name":"IEEE Transactions on Terahertz Science and Technology","volume":"14 6","pages":"830-842"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Terahertz Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10700977/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Beam-scanning capabilities for space-borne submillimeter-wave spectrometers are critical for instrument calibration and field-of-view mapping. However, the lack of low-loss waveguide-integrated phase shifters above 500 GHz has been a significant challenge for realizing Terahertz phased array antennas. Recently developed microelectromechanical system (MEMS)-actuated phase shifters have emerged as promising candidates, initially demonstrating a 145 ${}^\circ$ phase shift. As a first demonstration of the efficacy of these phase shifters for electronic beam-steering, we present the design, fabrication, and characterization of a linear, near-Nyquist sampled, 4 × 1-element phased array operating from 500 to 600 GHz. The array element is a silicon micromachined leaky-wave feed based on a Fabry–Pérot cavity to enhance directivity and reduce grating lobes while achieving bandwidth requirements with minimal scan loss. It is shown, through measurements, that this antenna feed is suitable for use in larger 8 × 1-element arrays for applications that require moderate gain (20 dBi) and scanning ( $\pm 20^\circ$ ) with a fan beam. Furthermore, we present measurement results of a second generation of MEMS phase shifters with an increased measured phase shift up to 350 ${}^\circ$ . A full 360 ${}^\circ$ phase-wrapping capability is desired as this will enable high-gain lens-scanning phased arrays that can be used for future submillimeter-wave spectrometers.
用于太赫兹波束扫描的 MEMS 移相器:使用泄漏波馈电的 500-600 GHz 相控阵演示
机载亚毫米波光谱仪的波束扫描能力对于仪器校准和视场绘图至关重要。然而,缺乏 500 GHz 以上的低损耗波导集成移相器一直是实现太赫兹相控阵天线的重大挑战。最近开发的微机电系统(MEMS)驱动移相器已成为很有前途的候选产品,最初展示了 145${}^\circ$ 的相移。作为这些移相器在电子波束转向方面功效的首次展示,我们介绍了一个线性、近奈奎斯特采样、4 × 1 元相控阵列的设计、制造和特性分析,其工作频率为 500 至 600 GHz。阵列元件是一个基于法布里-佩罗腔的硅微机械漏波馈源,以增强指向性和减少光栅裂纹,同时以最小的扫描损耗满足带宽要求。测量结果表明,这种天线馈线适用于需要中等增益(20 dBi)和扇形波束扫描($\pm 20^\circ$)的大型 8 × 1 元阵列应用。此外,我们还展示了第二代 MEMS 移相器的测量结果,其测量相移增加到 350${}^\circ$。我们希望实现360{}^\circ$的相位包络能力,因为这将使高增益透镜扫描相控阵能够用于未来的亚毫米波光谱仪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Terahertz Science and Technology
IEEE Transactions on Terahertz Science and Technology ENGINEERING, ELECTRICAL & ELECTRONIC-OPTICS
CiteScore
7.10
自引率
9.40%
发文量
102
期刊介绍: IEEE Transactions on Terahertz Science and Technology focuses on original research on Terahertz theory, techniques, and applications as they relate to components, devices, circuits, and systems involving the generation, transmission, and detection of Terahertz waves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信