Fabian Gärisch, Vincent Schröder, Emil J. W. List-Kratochvil, Giovanni Ligorio
{"title":"Scalable Fabrication of Neuromorphic Devices Using Inkjet Printing for the Deposition of Organic Mixed Ionic-Electronic Conductor","authors":"Fabian Gärisch, Vincent Schröder, Emil J. W. List-Kratochvil, Giovanni Ligorio","doi":"10.1002/aelm.202400479","DOIUrl":null,"url":null,"abstract":"Recent advancements in artificial intelligence (AI) have highlighted the critical need for energy-efficient hardware solutions, especially in edge-computing applications. However, traditional AI approaches are plagued by significant power consumption. In response, researchers have turned to biomimetic strategies, drawing inspiration from the ion-mediated operating principle of biological synapses, to develop organic neuromorphic devices as promising alternatives. Organic mixed ionic-electronic conductor (OMIEC) materials have emerged as particularly noteworthy in this field, due to their potential for enhancing neuromorphic computing capabilities. Together with device performance, it is crucial to select devices that allow fabrication via scalable techniques. This study investigates the fabrication of OMIEC-based neuromorphic devices using inkjet printing, providing a scalable and material-efficient approach. Employing a commercially available polymer mixed ionic-electronic conductor (BTEM-PPV) and a lithium salt, inkjet-printed devices exhibit performance comparable to those fabricated via traditional spin-coating methods. These two-terminal neuromorphic devices demonstrate functionality analogous to literature-known devices and demonstrate promising frequency-dependent short-term plasticity. Furthermore, comparative studies with previous light-emitting electrochemical cells (LECs) and neuromorphic OMIEC devices validate the efficacy of inkjet printing as a potential fabrication technique. The findings suggest that inkjet printing is suitable for large-scale production, offering reproducible and stable fabrication processes. By adopting the OMIEC material system, inkjet printing holds the potential for further enhancing device performance and functionality. Overall, this study underscores the viability of inkjet printing as a scalable fabrication method for OMIEC-based neuromorphic devices, paving the way for advancements in AI hardware.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"109 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400479","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in artificial intelligence (AI) have highlighted the critical need for energy-efficient hardware solutions, especially in edge-computing applications. However, traditional AI approaches are plagued by significant power consumption. In response, researchers have turned to biomimetic strategies, drawing inspiration from the ion-mediated operating principle of biological synapses, to develop organic neuromorphic devices as promising alternatives. Organic mixed ionic-electronic conductor (OMIEC) materials have emerged as particularly noteworthy in this field, due to their potential for enhancing neuromorphic computing capabilities. Together with device performance, it is crucial to select devices that allow fabrication via scalable techniques. This study investigates the fabrication of OMIEC-based neuromorphic devices using inkjet printing, providing a scalable and material-efficient approach. Employing a commercially available polymer mixed ionic-electronic conductor (BTEM-PPV) and a lithium salt, inkjet-printed devices exhibit performance comparable to those fabricated via traditional spin-coating methods. These two-terminal neuromorphic devices demonstrate functionality analogous to literature-known devices and demonstrate promising frequency-dependent short-term plasticity. Furthermore, comparative studies with previous light-emitting electrochemical cells (LECs) and neuromorphic OMIEC devices validate the efficacy of inkjet printing as a potential fabrication technique. The findings suggest that inkjet printing is suitable for large-scale production, offering reproducible and stable fabrication processes. By adopting the OMIEC material system, inkjet printing holds the potential for further enhancing device performance and functionality. Overall, this study underscores the viability of inkjet printing as a scalable fabrication method for OMIEC-based neuromorphic devices, paving the way for advancements in AI hardware.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.