High performance ternary organic solar cells assisted by red fluorescent materials through improved emission lifetime and complementary short wavelength light absorption†
IF 5.7 2区 材料科学Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"High performance ternary organic solar cells assisted by red fluorescent materials through improved emission lifetime and complementary short wavelength light absorption†","authors":"Yingze Lei, Zhiyong Liu and Han Zhang","doi":"10.1039/D4TC02796E","DOIUrl":null,"url":null,"abstract":"<p >The energy transfer from a third component material to donor materials and the broadening of the absorption spectrum of the photoactive layer both play an important role in the exciton dissociation process and enhancing photon utilization. Suppressing the charge recombination process and enhancing charge carrier transport are promising strategies to improve the photovoltaic performance of organic solar cells (OSCs). In this manuscript, an effective method is presented using the red fluorescence material 4-(dicyanomethylene)-2-<em>tert</em>-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4<em>H</em>-pyran (DCJTB) as the third component and PM6:Y6 as the host photoactive layer. The photoluminescence spectrum of DCJTB is fully covered by the absorption spectrum of PM6, indicating that the energy from DCJTB can transfer to PM6, which prolongs the exciton lifetime and ensures sufficient time for diffusion and dissociation. The efficient short wavelength light absorption capability of DCJTB is beneficial to enhance the photon utilization efficiency. In addition, a small amount of DCJTB as a third component material can improve the crystallinity of a film and provide more efficient charge transport channels. These results suggest that the ternary strategy with the red fluorescence material DCJTB as the third component provides a new design idea to realize high-performance OSCs.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc02796e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The energy transfer from a third component material to donor materials and the broadening of the absorption spectrum of the photoactive layer both play an important role in the exciton dissociation process and enhancing photon utilization. Suppressing the charge recombination process and enhancing charge carrier transport are promising strategies to improve the photovoltaic performance of organic solar cells (OSCs). In this manuscript, an effective method is presented using the red fluorescence material 4-(dicyanomethylene)-2-tert-butyl-6-(1,1,7,7-tetramethyljulolidin-4-yl-vinyl)-4H-pyran (DCJTB) as the third component and PM6:Y6 as the host photoactive layer. The photoluminescence spectrum of DCJTB is fully covered by the absorption spectrum of PM6, indicating that the energy from DCJTB can transfer to PM6, which prolongs the exciton lifetime and ensures sufficient time for diffusion and dissociation. The efficient short wavelength light absorption capability of DCJTB is beneficial to enhance the photon utilization efficiency. In addition, a small amount of DCJTB as a third component material can improve the crystallinity of a film and provide more efficient charge transport channels. These results suggest that the ternary strategy with the red fluorescence material DCJTB as the third component provides a new design idea to realize high-performance OSCs.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors