Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Gilsang Yoon;Donghyun Go;Jounghun Park;Donghwi Kim;Jongwoo Kim;Ukju An;Jungsik Kim;Jeong-Soo Lee;Byoung Don Kong
{"title":"Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory","authors":"Gilsang Yoon;Donghyun Go;Jounghun Park;Donghwi Kim;Jongwoo Kim;Ukju An;Jungsik Kim;Jeong-Soo Lee;Byoung Don Kong","doi":"10.1109/TNANO.2024.3481392","DOIUrl":null,"url":null,"abstract":"Trap profiles in the bandgap-engineered tunneling oxide (BE-TOX) layer of a 3D NAND flash memory were investigated using a transient current trap spectroscopy technique. A new pulse scheme was introduced to generate channel holes and subsequently analyze the hole traps in the BE-TOX layer. In the fresh cell, the hole traps were primarily located at a trap energy level (\n<italic>E<sub>T</sub></i>\n) of 1.1 eV, whereas the electron traps exhibited two distinct peaks at \n<italic>E<sub>T</sub></i>\n = 0.75 and 1.25 eV. With increasing program/erase (P/E) cycling operations, the peak \n<italic>E<sub>T</sub></i>\n associated with hole traps shifted toward shallower levels. Conversely, the electron traps remained unchanged, although their intensities increased. The extracted trap generation exhibited the power-law characteristics.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"733-740"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10720118/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Trap profiles in the bandgap-engineered tunneling oxide (BE-TOX) layer of a 3D NAND flash memory were investigated using a transient current trap spectroscopy technique. A new pulse scheme was introduced to generate channel holes and subsequently analyze the hole traps in the BE-TOX layer. In the fresh cell, the hole traps were primarily located at a trap energy level ( ET ) of 1.1 eV, whereas the electron traps exhibited two distinct peaks at ET = 0.75 and 1.25 eV. With increasing program/erase (P/E) cycling operations, the peak ET associated with hole traps shifted toward shallower levels. Conversely, the electron traps remained unchanged, although their intensities increased. The extracted trap generation exhibited the power-law characteristics.
BE-TOX 中的电子和空穴陷阱剖面对 3D NAND 闪存保持特性的影响
利用瞬态电流陷阱光谱技术研究了三维 NAND 闪存带隙工程隧道氧化物(BE-TOX)层中的陷阱剖面。研究采用了一种新的脉冲方案来产生沟道空穴,然后分析 BE-TOX 层中的空穴陷阱。在新电池中,空穴陷阱主要位于 1.1 eV 的陷阱能级 (ET),而电子陷阱则在 ET = 0.75 和 1.25 eV 处显示出两个明显的峰值。随着编程/擦除(P/E)循环操作的增加,与空穴阱相关的峰值 ET 向更浅的水平移动。相反,电子陷阱保持不变,但其强度有所增加。提取的陷阱生成呈现出幂律特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信