The extremely low-frequency electromagnetic field (50 Hz) can establish a new “set-point” for the activity of the locus coeruleus–noradrenergic (LC-NA) system in rat
{"title":"The extremely low-frequency electromagnetic field (50 Hz) can establish a new “set-point” for the activity of the locus coeruleus–noradrenergic (LC-NA) system in rat","authors":"Angelika Klimek , Hanna Kletkiewicz , Agnieszka Siejka , Joanna Wyszkowska , Justyna Maliszewska , Maciej Klimiuk , Milena Jankowska , Justyna Rogalska","doi":"10.1016/j.brainresbull.2024.111111","DOIUrl":null,"url":null,"abstract":"<div><div>Exposure of organisms to extremely low-frequency electromagnetic field (ELF-EMF; 50 Hz) has been increasing in recent decades, which is connected with dynamic technological development. ELF-EMF is considered a stress factor and its effects on organisms are still being investigated. We aimed to determine its impact on the locus coeruleus–noradrenergic (LC-NA) system enabling adaptation to stressful conditions. For this purpose, we exposed rats to 50 Hz ELF-EMF of 1 and 7 mT, 1 h/day for 7 days. The procedure was repeated three times to examine the organism's adaptive capabilities. Subsequently, the concentration of adrenaline, noradrenaline and its metabolite MHPG as well as the expression of the β2-adrenergic receptor was assessed. After the end of each exposure, part of the animals were subjected to a behavioural test to assess the influence of repeated ELF-EMF exposure on stress response to subsequent stress factors. Our research proved that mechanisms underlying the effects of ELF-EMF on stress response include the LC-NA system. ELF-EMF of 1 mT induced adaptive changes in the NA-LC system. However, exposure to 7 mT caused increased activity of the stress system which resulted in sensitization to subsequent, heterotypic (different from the one previously acting) stress factor. As ELF-EMF of 7 mT caused a profound decrease in β2-AR level would strongly inhibit the potential for neuroplastic processes in the hippocampus. Moreover, rats exposed to ELF-EMF of 7 mT showed moderately increased anxiety-related behaviour. Disturbances in NA-LC transmission may underlie the development of some neurodegenerative and psychiatric diseases which indicates the possible involvement of ELF-EMF in the pathogenesis of these disorders.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"219 ","pages":"Article 111111"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024002454","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exposure of organisms to extremely low-frequency electromagnetic field (ELF-EMF; 50 Hz) has been increasing in recent decades, which is connected with dynamic technological development. ELF-EMF is considered a stress factor and its effects on organisms are still being investigated. We aimed to determine its impact on the locus coeruleus–noradrenergic (LC-NA) system enabling adaptation to stressful conditions. For this purpose, we exposed rats to 50 Hz ELF-EMF of 1 and 7 mT, 1 h/day for 7 days. The procedure was repeated three times to examine the organism's adaptive capabilities. Subsequently, the concentration of adrenaline, noradrenaline and its metabolite MHPG as well as the expression of the β2-adrenergic receptor was assessed. After the end of each exposure, part of the animals were subjected to a behavioural test to assess the influence of repeated ELF-EMF exposure on stress response to subsequent stress factors. Our research proved that mechanisms underlying the effects of ELF-EMF on stress response include the LC-NA system. ELF-EMF of 1 mT induced adaptive changes in the NA-LC system. However, exposure to 7 mT caused increased activity of the stress system which resulted in sensitization to subsequent, heterotypic (different from the one previously acting) stress factor. As ELF-EMF of 7 mT caused a profound decrease in β2-AR level would strongly inhibit the potential for neuroplastic processes in the hippocampus. Moreover, rats exposed to ELF-EMF of 7 mT showed moderately increased anxiety-related behaviour. Disturbances in NA-LC transmission may underlie the development of some neurodegenerative and psychiatric diseases which indicates the possible involvement of ELF-EMF in the pathogenesis of these disorders.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.