Achieving High Ferroelectric Polarization in Ultrathin BaTiO3 Films on Si

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Pratik Bagul, Han Han, Pieter Lagrain, Stefanie Sergeant, Ilse Hoflijk, Jill Serron, Olivier Richard, Thierry Conard, Jan Van Houdt, Ingrid De Wolf, Sean R. C. McMitchell
{"title":"Achieving High Ferroelectric Polarization in Ultrathin BaTiO3 Films on Si","authors":"Pratik Bagul, Han Han, Pieter Lagrain, Stefanie Sergeant, Ilse Hoflijk, Jill Serron, Olivier Richard, Thierry Conard, Jan Van Houdt, Ingrid De Wolf, Sean R. C. McMitchell","doi":"10.1002/aelm.202400440","DOIUrl":null,"url":null,"abstract":"Ferroelectrics show promise for low-power, non-volatile memory technologies. However, material challenges in state-of-the-art ferroelectric hafnates and the high coercive fields required limit their application in devices. Scaling of other candidate materials is challenging, often requiring epitaxial single-crystalline growth using specialised substrates. Here, ferroelectricity is demonstrated in polycrystalline BaTiO<sub>3</sub> films at 10 nm thickness on Si substrates. They exhibit the highest reported remnant polarization for polycrystalline layers, 13 µC cm<sup>−2</sup>, a value that is competitive with the epitaxial BaTiO<sub>3</sub> state-of-the-art. This is realised by introducing a novel conductive oxygen barrier, platinum silicide, which also offers strain enhancement of the ferroelectricity. Moreover, it is demonstrated that these layers can be positioned in device-like stacks whilst maintaining ferroelectricity at 10 nm. The findings of polycrystalline perovskite ferroelectric growth in stack configurations akin to those in production flows paves the way for high performance perovskites with greater material complexity.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"87 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400440","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroelectrics show promise for low-power, non-volatile memory technologies. However, material challenges in state-of-the-art ferroelectric hafnates and the high coercive fields required limit their application in devices. Scaling of other candidate materials is challenging, often requiring epitaxial single-crystalline growth using specialised substrates. Here, ferroelectricity is demonstrated in polycrystalline BaTiO3 films at 10 nm thickness on Si substrates. They exhibit the highest reported remnant polarization for polycrystalline layers, 13 µC cm−2, a value that is competitive with the epitaxial BaTiO3 state-of-the-art. This is realised by introducing a novel conductive oxygen barrier, platinum silicide, which also offers strain enhancement of the ferroelectricity. Moreover, it is demonstrated that these layers can be positioned in device-like stacks whilst maintaining ferroelectricity at 10 nm. The findings of polycrystalline perovskite ferroelectric growth in stack configurations akin to those in production flows paves the way for high performance perovskites with greater material complexity.

Abstract Image

在硅基超薄 BaTiO3 薄膜中实现高铁电极化
铁电有望成为低功耗、非易失性存储器技术。然而,最先进的铁电铪酸盐的材料挑战和所需的高矫顽力场限制了它们在设备中的应用。其他候选材料的扩展也具有挑战性,通常需要使用专用衬底进行外延单晶生长。在这里,硅衬底上厚度为 10 纳米的多晶 BaTiO3 薄膜展示了铁电性。据报道,这些多晶层的残余极化达到了 13 µC cm-2,是目前所报道的残余极化最高的多晶层,这一数值与最先进的外延 BaTiO3 相比不相上下。这是通过引入新型导电氧阻挡层--硅化铂实现的,硅化铂还能增强铁电应变。此外,研究还证明,这些层可以放置在类似设备的堆栈中,同时保持 10 纳米的铁电性。多晶包晶石铁电生长在与生产流程中类似的堆叠配置中的发现,为具有更大材料复杂性的高性能包晶石铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信