{"title":"White mulberry leaf (Morus alba L.) infusion as a strategy to reduce starch digestibility: The influence of particle size of leaf powder","authors":"","doi":"10.1016/j.nfs.2024.100196","DOIUrl":null,"url":null,"abstract":"<div><div>Mulberry leaf (<em>Morus Alba</em> L.) has been found in clinical trials to be effective in reducing diabetes in Asia. The powdered tea market is expanding in popularity due to its functional properties. This study aimed to examine the influence of different particle sizes of mulberry leaf powder (MLP) infusion on the digestibility of starch in cooked <em>Japonica</em> rice (cv. Koshihikari) and the bioaccessibility of phytochemicals. Dried mulberry leaf was pulverized and sieved into several particle sizes: 160 μm (MLP160), 250 μm (MLP250), 404 μm (MLP404), and 774 μm (MLP774). Through simulated <em>in vitro</em> digestion, we assessed starch hydrolysis (%S<sub>H</sub>), the kinetics of starch hydrolysis, estimated glycemic index (eGI), as well as total phenolic content (TPC) and total flavonoid content (TFC). The smaller particle size of MLP showed a greater reduction of eGI. Specifically, infusions prepared from MLP160 resulted in a reduction of 15 % in eGI for cooked grains and 3 % for slurries, respectively. The reduction in eGI was attributed to the interaction among flavonoids and digestive enzymes, demonstrating a concentration-dependent manner on enzyme inhibition effect. Pulverization significantly influenced the concentration of phytochemicals and their bioaccessibility in infusions. This study offers valuable insights into determining optimal particle sizes for MLP, considering both physical and functional characteristics as well as implications for the food industry. The results further suggest that MLP infusion holds promise as a functional beverage, potentially providing benefits in reducing postprandial hyperglycemia.</div></div>","PeriodicalId":19294,"journal":{"name":"NFS Journal","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NFS Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235236462400035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mulberry leaf (Morus Alba L.) has been found in clinical trials to be effective in reducing diabetes in Asia. The powdered tea market is expanding in popularity due to its functional properties. This study aimed to examine the influence of different particle sizes of mulberry leaf powder (MLP) infusion on the digestibility of starch in cooked Japonica rice (cv. Koshihikari) and the bioaccessibility of phytochemicals. Dried mulberry leaf was pulverized and sieved into several particle sizes: 160 μm (MLP160), 250 μm (MLP250), 404 μm (MLP404), and 774 μm (MLP774). Through simulated in vitro digestion, we assessed starch hydrolysis (%SH), the kinetics of starch hydrolysis, estimated glycemic index (eGI), as well as total phenolic content (TPC) and total flavonoid content (TFC). The smaller particle size of MLP showed a greater reduction of eGI. Specifically, infusions prepared from MLP160 resulted in a reduction of 15 % in eGI for cooked grains and 3 % for slurries, respectively. The reduction in eGI was attributed to the interaction among flavonoids and digestive enzymes, demonstrating a concentration-dependent manner on enzyme inhibition effect. Pulverization significantly influenced the concentration of phytochemicals and their bioaccessibility in infusions. This study offers valuable insights into determining optimal particle sizes for MLP, considering both physical and functional characteristics as well as implications for the food industry. The results further suggest that MLP infusion holds promise as a functional beverage, potentially providing benefits in reducing postprandial hyperglycemia.
NFS JournalAgricultural and Biological Sciences-Food Science
CiteScore
11.10
自引率
0.00%
发文量
18
审稿时长
29 days
期刊介绍:
The NFS Journal publishes high-quality original research articles and methods papers presenting cutting-edge scientific advances as well as review articles on current topics in all areas of nutrition and food science. The journal particularly invites submission of articles that deal with subjects on the interface of nutrition and food research and thus connect both disciplines. The journal offers a new form of submission Registered Reports (see below). NFS Journal is a forum for research in the following areas: • Understanding the role of dietary factors (macronutrients and micronutrients, phytochemicals, bioactive lipids and peptides etc.) in disease prevention and maintenance of optimum health • Prevention of diet- and age-related pathologies by nutritional approaches • Advances in food technology and food formulation (e.g. novel strategies to reduce salt, sugar, or trans-fat contents etc.) • Nutrition and food genomics, transcriptomics, proteomics, and metabolomics • Identification and characterization of food components • Dietary sources and intake of nutrients and bioactive compounds • Food authentication and quality • Nanotechnology in nutritional and food sciences • (Bio-) Functional properties of foods • Development and validation of novel analytical and research methods • Age- and gender-differences in biological activities and the bioavailability of vitamins, minerals, and phytochemicals and other dietary factors • Food safety and toxicology • Food and nutrition security • Sustainability of food production