{"title":"Performance control during longitudinal activation fMRI studies.","authors":"Martin Lotze","doi":"10.3389/fnhum.2024.1459140","DOIUrl":null,"url":null,"abstract":"<p><p>The documentation of performance during functional imaging represents a standard procedure employed to control for compliance, sensorimotor, and cognitive demands. In the case of motor tasks, preciseness, force, and frequency have a significant impact on the magnitude of functional activation. Questionnaires are used in psychological investigations to control for cognitive demand, while psychophysiological documentation is employed to record bodily responses. For longitudinal intervention studies, it is of utmost importance to implement meticulous pre- and post-performance controls and balance to accurately assess changes over time. Any changes in compliance may introduce additional uncontrolled variables, which can hinder the interpretation of functional magnetic resonance imaging (fMRI)-related changes. This narrative review presents strategies for controlling and balancing performance in functional imaging approaches to document neuroplasticity in rehabilitative studies. These strategies include not only motor-related aspects, such as precision, velocity, and force, but also timing aspects, such as the start and stop of movement periods. In addition, it discusses strategies for the modulation and control of movement aspects with visual feedback, as well as for the control of physiological changes during experimental modulation. Although these measures require additional care, which is often more demanding than the neuroimaging part of the study, they are crucial for a relevant interpretation and publication of fMRI studies.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"18 ","pages":"1459140"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2024.1459140","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The documentation of performance during functional imaging represents a standard procedure employed to control for compliance, sensorimotor, and cognitive demands. In the case of motor tasks, preciseness, force, and frequency have a significant impact on the magnitude of functional activation. Questionnaires are used in psychological investigations to control for cognitive demand, while psychophysiological documentation is employed to record bodily responses. For longitudinal intervention studies, it is of utmost importance to implement meticulous pre- and post-performance controls and balance to accurately assess changes over time. Any changes in compliance may introduce additional uncontrolled variables, which can hinder the interpretation of functional magnetic resonance imaging (fMRI)-related changes. This narrative review presents strategies for controlling and balancing performance in functional imaging approaches to document neuroplasticity in rehabilitative studies. These strategies include not only motor-related aspects, such as precision, velocity, and force, but also timing aspects, such as the start and stop of movement periods. In addition, it discusses strategies for the modulation and control of movement aspects with visual feedback, as well as for the control of physiological changes during experimental modulation. Although these measures require additional care, which is often more demanding than the neuroimaging part of the study, they are crucial for a relevant interpretation and publication of fMRI studies.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.