Exploring topological phases in superconducting transition metal (Sc, Ti, V)-carbides

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Elbahri , M. Ragragui , L.B. Drissi , E.H. Saidi
{"title":"Exploring topological phases in superconducting transition metal (Sc, Ti, V)-carbides","authors":"A. Elbahri ,&nbsp;M. Ragragui ,&nbsp;L.B. Drissi ,&nbsp;E.H. Saidi","doi":"10.1016/j.mssp.2024.108993","DOIUrl":null,"url":null,"abstract":"<div><div>The combination of non trivial band topology and superconductivity, resulting in topological superconductivity, igniting a fervent pursuit in the realm of quantum materials. Through density functional theory and maximally localized Wannier functions, we delve into the electronic and topological properties of transition metal carbides <span><math><mi>Λ</mi></math></span>C (with <span><math><mrow><mi>Λ</mi><mo>=</mo></mrow></math></span> Sc, Ti, V). Phonon dispersions guarantee the structural stability of these superconductors. Witness the presence of band inversion within the Brillouin Zone of TiC and VC, contrasting the absence of such band inversion in ScC. In addition, the nonzero <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> topological invariant as well as the occurrence of Dirac cone in the surface spectrum of TiC and VC, unveil their topologically nontrivial character. These transition metal carbides emerge as promising candidates for probing the depths of topological superconductivity and unraveling the associated Majorana bound states.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800124008898","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The combination of non trivial band topology and superconductivity, resulting in topological superconductivity, igniting a fervent pursuit in the realm of quantum materials. Through density functional theory and maximally localized Wannier functions, we delve into the electronic and topological properties of transition metal carbides ΛC (with Λ= Sc, Ti, V). Phonon dispersions guarantee the structural stability of these superconductors. Witness the presence of band inversion within the Brillouin Zone of TiC and VC, contrasting the absence of such band inversion in ScC. In addition, the nonzero Z2 topological invariant as well as the occurrence of Dirac cone in the surface spectrum of TiC and VC, unveil their topologically nontrivial character. These transition metal carbides emerge as promising candidates for probing the depths of topological superconductivity and unraveling the associated Majorana bound states.
探索超导过渡金属(Sc、Ti、V)碳化物中的拓扑相位
非琐碎带拓扑与超导性的结合,导致了拓扑超导,点燃了量子材料领域的热切追求。通过密度泛函理论和最大局域万尼尔函数,我们深入研究了过渡金属碳化物ΛC(Λ= Sc、Ti、V)的电子和拓扑特性。声子色散保证了这些超导体的结构稳定性。我们可以看到 TiC 和 VC 的布里渊区内存在带反转,而 ScC 则不存在这种带反转。此外,非零 Z2 拓扑不变性以及 TiC 和 VC 表面谱中出现的狄拉克锥,揭示了它们的拓扑非三维特性。这些过渡金属碳化物有望成为探测拓扑超导电性深度和揭示相关马约拉纳束缚态的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信