On Kursov's theorem for matrices over division rings

IF 1 3区 数学 Q1 MATHEMATICS
Truong Huu Dung , Tran Nam Son
{"title":"On Kursov's theorem for matrices over division rings","authors":"Truong Huu Dung ,&nbsp;Tran Nam Son","doi":"10.1016/j.laa.2024.10.018","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>D</em> be a division ring with center <em>F</em> and multiplicative group <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span>, where each element of the commutator subgroup of <span><math><msup><mrow><mi>D</mi></mrow><mrow><mo>×</mo></mrow></msup></math></span> can be expressed as a product of at most <em>s</em> commutators. A known theorem of Kursov states that if <em>D</em> is finite-dimensional over <em>F</em>, then every element of the commutator subgroup of the general linear group over <em>D</em> can be expressed as a product of at most <span><math><mi>s</mi><mo>+</mo><mn>1</mn></math></span> commutators. We show that this result remains valid when <em>F</em> has a sufficiently large number of elements, without requiring <em>D</em> to be finite-dimensional. Our approach not only improves upon recent results on matrix decompositions over division rings but also provides a look at the Engel word map for matrices over arbitrary algebras.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"704 ","pages":"Pages 218-230"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524003987","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let D be a division ring with center F and multiplicative group D×, where each element of the commutator subgroup of D× can be expressed as a product of at most s commutators. A known theorem of Kursov states that if D is finite-dimensional over F, then every element of the commutator subgroup of the general linear group over D can be expressed as a product of at most s+1 commutators. We show that this result remains valid when F has a sufficiently large number of elements, without requiring D to be finite-dimensional. Our approach not only improves upon recent results on matrix decompositions over division rings but also provides a look at the Engel word map for matrices over arbitrary algebras.
关于除法环上矩阵的库尔索夫定理
设 D 是一个中心为 F 的分环和乘法群 D×,其中 D× 的换元子群的每个元素都可以表示为最多 s 个换元的乘积。库尔索夫的一个已知定理指出,如果 D 是 F 上的有限维,那么 D 上一般线性群的换元子群的每个元素都可以表示为最多 s+1 个换元的乘积。我们证明,当 F 有足够多的元素时,这一结果仍然有效,而不需要 D 是有限维的。我们的方法不仅改进了最近关于除法环上矩阵分解的结果,而且还提供了对任意数组上矩阵的恩格尔词映射的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信