Efficient risk-based inspection framework: Balancing safety and budgetary constraints

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Y. Javid
{"title":"Efficient risk-based inspection framework: Balancing safety and budgetary constraints","authors":"Y. Javid","doi":"10.1016/j.ress.2024.110519","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient equipment maintenance is paramount across various industries to mitigate energy wastage and avert potential disasters such as hazardous emissions, fires, and explosions. Within this context, the adoption of risk-based inspection strategies has emerged as a crucial method for assessing equipment integrity. This study integrates the principles of Risk-Based Inspection (RBI) with a novel two-objective mathematical model, resulting in a comprehensive framework for equipment inspection programs. The primary aim of this framework is to reduce overall risk exposure while optimizing inspection expenditures. Unlike conventional approaches, this methodology eliminates the necessity to define threshold risk levels. By integrating inspection costs into the model, the assessment of Failure Consequences, and thereby, the decision-making process has been streamlined. This innovative algorithm effectively balances the reduction of failure likelihood with the minimization of inspection costs, enhancing decision-making capabilities. Importantly, this approach offers significant protection against energy wastage and the occurrence of leaks through robust risk management strategies. The algorithm employs specialized operators to expedite the discovery of optimal solutions. Empirical validation through a case study conducted at a Petrochemical Plant highlights the practicality and effectiveness of the proposed framework.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095183202400591X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient equipment maintenance is paramount across various industries to mitigate energy wastage and avert potential disasters such as hazardous emissions, fires, and explosions. Within this context, the adoption of risk-based inspection strategies has emerged as a crucial method for assessing equipment integrity. This study integrates the principles of Risk-Based Inspection (RBI) with a novel two-objective mathematical model, resulting in a comprehensive framework for equipment inspection programs. The primary aim of this framework is to reduce overall risk exposure while optimizing inspection expenditures. Unlike conventional approaches, this methodology eliminates the necessity to define threshold risk levels. By integrating inspection costs into the model, the assessment of Failure Consequences, and thereby, the decision-making process has been streamlined. This innovative algorithm effectively balances the reduction of failure likelihood with the minimization of inspection costs, enhancing decision-making capabilities. Importantly, this approach offers significant protection against energy wastage and the occurrence of leaks through robust risk management strategies. The algorithm employs specialized operators to expedite the discovery of optimal solutions. Empirical validation through a case study conducted at a Petrochemical Plant highlights the practicality and effectiveness of the proposed framework.
基于风险的高效检查框架:平衡安全与预算限制
在各行各业中,高效的设备维护对于减少能源浪费和避免危险排放、火灾和爆炸等潜在灾难至关重要。在此背景下,采用基于风险的检测策略已成为评估设备完整性的重要方法。本研究将基于风险的检查(RBI)原则与一个新颖的双目标数学模型相结合,为设备检查项目提供了一个综合框架。该框架的主要目的是降低整体风险,同时优化检查支出。与传统方法不同,该方法无需定义阈值风险水平。通过将检测成本纳入模型,故障后果的评估以及决策过程都得到了简化。这种创新算法有效地平衡了降低故障可能性与检查成本最小化之间的关系,从而提高了决策能力。重要的是,这种方法通过强有力的风险管理策略,为防止能源浪费和发生泄漏提供了重要保护。该算法采用了专门的运算器,以加快发现最佳解决方案。通过在一家石油化工厂进行的案例研究进行的经验验证,凸显了所提框架的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信