{"title":"Local Delivery of Exosomes and Antibiotics in Hydroxyapatite-Based Nanocement for Osteomyelitis Management.","authors":"Sneha Gupta, Irfan Qayoom, Ayushi Mairal, Sneha Singh, Ashok Kumar","doi":"10.1021/acsinfecdis.4c00721","DOIUrl":null,"url":null,"abstract":"<p><p>The management of bone and joint infections is a formidable challenge in orthopedics and poses a global health concern. While clinical management emphasizes infection prevention and complete eradication, an effective strategy for stabilizing skeletal tissue with adequate soft tissue coverage remains limited. In this study, we have employed a novel approach of using the local delivery of exosomes and antibiotics (rifampicin) using a hydroxyapatite-based nanocement carrier to manage the residual space created during debridement effectively. Additionally, we synthesized a periosteum-guiding antioxidant herbal membrane to leverage the inherent periosteum regeneration capability of the bone, facilitating bone callus repair and natural healing. The synthesized scaffolds were biocompatible and demonstrated potent antibacterial activity <i>in vitro</i>. When evaluated <i>in vivo</i> in the <i>Staphylococcus aureus</i>-induced rat tibial osteomyelitis model, the released drugs successfully cleared the residual bacteria and the released exosome promoted bone healing, resulting in 3-fold increase in bone volume as analyzed via micro-CT analysis. Immunofluorescence staining of periosteum-specific markers also indicated the complete formation of periosteal layers, thus highlighting the complete bone repair.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00721","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The management of bone and joint infections is a formidable challenge in orthopedics and poses a global health concern. While clinical management emphasizes infection prevention and complete eradication, an effective strategy for stabilizing skeletal tissue with adequate soft tissue coverage remains limited. In this study, we have employed a novel approach of using the local delivery of exosomes and antibiotics (rifampicin) using a hydroxyapatite-based nanocement carrier to manage the residual space created during debridement effectively. Additionally, we synthesized a periosteum-guiding antioxidant herbal membrane to leverage the inherent periosteum regeneration capability of the bone, facilitating bone callus repair and natural healing. The synthesized scaffolds were biocompatible and demonstrated potent antibacterial activity in vitro. When evaluated in vivo in the Staphylococcus aureus-induced rat tibial osteomyelitis model, the released drugs successfully cleared the residual bacteria and the released exosome promoted bone healing, resulting in 3-fold increase in bone volume as analyzed via micro-CT analysis. Immunofluorescence staining of periosteum-specific markers also indicated the complete formation of periosteal layers, thus highlighting the complete bone repair.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.