Stimulated Secondary Emission of Single-Photon Avalanche Diodes

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kurtis Raymond;Fabrice Retière;Harry Lewis;Andrea Capra;Duncan McCarthy;Austin de St Croix;Giacomo Gallina;Joe McLaughlin;Juliette Martin;Nicolas Massacret;Paolo Agnes;Ryan Underwood;Seraphim Koulosousas;Peter Margetak
{"title":"Stimulated Secondary Emission of Single-Photon Avalanche Diodes","authors":"Kurtis Raymond;Fabrice Retière;Harry Lewis;Andrea Capra;Duncan McCarthy;Austin de St Croix;Giacomo Gallina;Joe McLaughlin;Juliette Martin;Nicolas Massacret;Paolo Agnes;Ryan Underwood;Seraphim Koulosousas;Peter Margetak","doi":"10.1109/TED.2024.3469918","DOIUrl":null,"url":null,"abstract":"Large-area next-generation physics experiments rely on using silicon photomultiplier (SiPM) devices to detect single photons, which trigger charge avalanches. The noise mechanism of external crosstalk occurs when secondary photons produced during a charge avalanche escape from an SiPM and trigger other devices within a detector system. This work presents measured spectra of the secondary photons emitted from the Hamamatsu VUV4 and Fondazione Bruno Kessler (FBK) VUV-HD3 SiPMs stimulated by laser light, near operational voltages. This work describes the microscope for the injection and emission of light (MIEL) setup, which is an experimental apparatus constructed for this purpose. Measurements have been performed at a range of overvoltage values and temperatures from 86 to 293 K. The number of photons produced per avalanche at the source is calculated from the measured spectra and determined to be \n<inline-formula> <tex-math>${49}\\pm {10}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${61}\\pm {11}$ </tex-math></inline-formula>\n photons produced per avalanche for the VUV4 and VUV-HD3, respectively, at 4-V overvoltage. No significant temperature dependence is observed within the measurement uncertainties. The overall number of photons emitted per avalanche from each SiPM device is also reported.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"6871-6879"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713286/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Large-area next-generation physics experiments rely on using silicon photomultiplier (SiPM) devices to detect single photons, which trigger charge avalanches. The noise mechanism of external crosstalk occurs when secondary photons produced during a charge avalanche escape from an SiPM and trigger other devices within a detector system. This work presents measured spectra of the secondary photons emitted from the Hamamatsu VUV4 and Fondazione Bruno Kessler (FBK) VUV-HD3 SiPMs stimulated by laser light, near operational voltages. This work describes the microscope for the injection and emission of light (MIEL) setup, which is an experimental apparatus constructed for this purpose. Measurements have been performed at a range of overvoltage values and temperatures from 86 to 293 K. The number of photons produced per avalanche at the source is calculated from the measured spectra and determined to be ${49}\pm {10}$ and ${61}\pm {11}$ photons produced per avalanche for the VUV4 and VUV-HD3, respectively, at 4-V overvoltage. No significant temperature dependence is observed within the measurement uncertainties. The overall number of photons emitted per avalanche from each SiPM device is also reported.
单光子雪崩二极管的受激二次发射
大面积下一代物理实验依赖于使用硅光电倍增管(SiPM)器件来探测触发电荷雪崩的单光子。当电荷雪崩期间产生的二次光子从硅光电倍增管逸出并触发探测器系统中的其他器件时,就会产生外部串扰噪声机制。本作品展示了 Hamamatsu VUV4 和 Fondazione Bruno Kessler (FBK) VUV-HD3 SiPM 在接近工作电压时受激光刺激而发射的二次光子的测量光谱。这项工作介绍了光注入和发射显微镜(MIEL)装置,这是一种为此目的而建造的实验设备。根据测量到的光谱计算出光源处每次雪崩产生的光子数,并确定在 4 V 过电压下,VUV4 和 VUV-HD3 每次雪崩产生的光子数分别为 ${49}\pm {10}$ 和 ${61}\pm {11}$。在测量不确定度范围内,没有观察到明显的温度依赖性。此外,还报告了每个 SiPM 器件每次雪崩发射的光子总数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信