Yat-Hing Ham, Jinping Cheng, Stefan Nagl, Jian Zhen Yu, Zongwei Cai and Wan Chan*,
{"title":"Surgical Face Mask as an Air Sampling Device for Assessing Personal Exposure to Airborne Antimicrobial Resistance Gene-Bearing Bacteria","authors":"Yat-Hing Ham, Jinping Cheng, Stefan Nagl, Jian Zhen Yu, Zongwei Cai and Wan Chan*, ","doi":"10.1021/acs.analchem.4c0470310.1021/acs.analchem.4c04703","DOIUrl":null,"url":null,"abstract":"<p >In this study, we assessed the feasibility of using a surgical face mask as a sampling device to collect airborne antimicrobial resistance genes (ARGs). The method entails collection of ARG-bearing microbes on face masks, followed by their DNA extraction and quantification by qPCR analysis. Analysis of masks worn by volunteers showed an apparent mask wearing time-dependent accumulation of 16S rRNA gene and select ARGs trapped on masks, highlighting the applicability of the method in monitoring personal ARG exposure through inhalation. The sampling method was then validated for reproducibility and compared with a filter-based sampling method before application in different environmental settings to further assess personal exposure to ARGs. In comparison with the filter-based method, our new sampling method does not require a sampling pump and is more user-friendly. More importantly, it records ARG exposure down to the personalized level; thus, it may be used in routine monitoring of occupational exposure and surveillance of ARG concentrations in indoor environments.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 42","pages":"17021–17026 17021–17026"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04703","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we assessed the feasibility of using a surgical face mask as a sampling device to collect airborne antimicrobial resistance genes (ARGs). The method entails collection of ARG-bearing microbes on face masks, followed by their DNA extraction and quantification by qPCR analysis. Analysis of masks worn by volunteers showed an apparent mask wearing time-dependent accumulation of 16S rRNA gene and select ARGs trapped on masks, highlighting the applicability of the method in monitoring personal ARG exposure through inhalation. The sampling method was then validated for reproducibility and compared with a filter-based sampling method before application in different environmental settings to further assess personal exposure to ARGs. In comparison with the filter-based method, our new sampling method does not require a sampling pump and is more user-friendly. More importantly, it records ARG exposure down to the personalized level; thus, it may be used in routine monitoring of occupational exposure and surveillance of ARG concentrations in indoor environments.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.